• ベストアンサー

x^y=y^x

x^y=y^x (x,yは正の実数としたときの、解に、x=y以外の場合はあるのでしょうか。。。?

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

「正の実数」だと無数に解があるけど, 「正の整数」に限定すると 2, 4 しかないんじゃなかったっけ. x^y = y^x の対数をとってちょっと変形すると (log x)/x = (log y)/y という関係式が得られます. そこで, 関数 y = (log x)/x のグラフを眺めれば, x がどのような条件のときに「x^y = y^x かつ x≠y」であるような y が存在するかがわかると思います.

その他の回答 (1)

  • masssyu
  • ベストアンサー率39% (29/74)
回答No.1

あります 例えば x=2,y=4 のときも時も成り立ち、その逆もまた成り立ちます

nemuine8
質問者

お礼

ああなるほど そうすると、p/q(p、qは自然数)としたとき x=y=p/q (すべてのp/q) または x=p y=pをp回p乗したもの とその逆(y=p,x=pをp回p乗したもの)でしょうか?

nemuine8
質問者

補足

pを任意の回数p乗したものの間違えです。

関連するQ&A

  • √x+√y≦k√(2x+y)

    すべての実数x,yに対し √x+√y≦k√(2x+y) が成り立つような実数kの最小値を求めよ。 必要条件から十分条件であることを証明しようと思ったのですが。 √x+√y≦k√(2x+y)はすべての正の実数x,yで成り立つので x=4,y=1のときも成り立たなくてはいけない。 このとき 1≦kとなる。 これを満たす最小値のkは1である。 逆にk=1とすると で、証明できません。k=1ではないのでしょうか。

  • x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありま

    x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありますか? また、この解の求め方が分る方がいらっしゃったら教えて下さい。

  • √x+√y≦k√(2x+y)について

    「すべての正の実数x、yに対し√x+√y≦k√(2x+y)が成り立つような実数kの最小値を求めよ」 という問題に対して、以下のような解答が示されていたのですが、それについてわからないところがあるので教えてください。 (解答) y=4zとおくと、与不等式は √x+2√z≦k√2√(x+2z) 題意はこれが任意の正のx,zで成り立つことと同値 両辺を3で割って (√x+2√z)/3≦{k*√(2/3)√{(x+2z)/3} ここで、y=√xのグラフが上に凸であることから (√x+2√z)/3≦{√(2/3)√{(x+2z)/3}が成立する したがって {√(2/3)√{(x+2z)/3}≦{k*√(2/3)√{(x+2z)/3} をkが満たせば十分であるから k≦√(3/2) 逆に、x=z=1の場合を考えることで k≦√(3/2)が必要 よって求めるkの最小値は √(3/2) (終) 疑問点は2つです。 1.どのようにすればy=4zとおくという考えを思いつくことが出来るでしょうか。 2.必要性の証明で、x,zに代入する値が1であることをどうやってみつけたのでしょうか。 よろしくお願いします。

  • 不等式 y≦-2x^2+5x+3 を考える

    受験用に演習問題を解いているのですが、(4)が答えを見ても納得できません。-が大きければ大きいほど、小さい数になると思ってたんですが・・・ 解説をどうかよろしくお願いします!! (1)は解の公式で解きました。 (2)は0,1,2,3 の4個ですか? でも、x=0のとき、y=0にならないんですが・・・ (3)は(2)の4つを不等式にいれて、一番yが大きい組み合わせを選びました。 (4)は条件の-2≦x≦4の、(-2)と(4)を不等式に入れて、yを出しました。すると、(-9)と(-15)が出ました。最も大きいものなので、(-9)だと思いましたが、正解は(-15)でした。。。(>_<)  でも、(3)で、x=1のときy=6とでているので、最も大きいものは「6」じゃないのか?という疑問も・・・。 問題: 不等式 y≦-2x^2+5x+3 を考える。 (1)この不等式を満たす二つの整数の組(x,y)を考える。 y=0のとき、この不等式を満たす実数xの範囲は -1/2≦x≦3 である。 (2)したがって、この不等式を満たす二つの整数の組(x,y)の中で、y=0のものは 4個ある。 (3)また、この不等式を満たす2つの整数の組(x,y)の中で、yが最も大きくなる組は (1,6) である。 (4)-2≦x≦4を満たすすべての実数xに対してこの不等式が成り立つような実数yを考える。 このようなyの中で最も大きいものは -15 である。

  • x+y, xy

    実数x, yがx^2 + y^2≦1を動くとき, (x + y, xy)が動く範囲を座標平面上に図示せよ。 という問題が受験数学でありますよね。この問題を少し拡張して 「xy平面上の点P(x, y)が領域D(x, y)の周および内部を動くとき(ax + by, cxy), abc≠0の動く範囲」 を考えてみようと思いました。 (p, q) = (ax + by, cxy)とおくX = acx, Y = bcyとおくと (cp, abcq) = (X + Y, XY)と変換され、領域D(x, y)はD'(X, Y)に移される X, Yはtの二次方程式 f(t) = t^2 - (X + Y)t + XY = t^2 - cpt + abcq = 0 の解なので、この解がD'内にある条件を決定する。 (1) D'(X, Y)がXとYの対称式で表される場合、pとqに変換できる。+実数条件。 (2) D'(X, Y)がX1≦X≦X2, Y1≦Y≦Y2というような領域の場合、解の存在条件からpとqに書き換えられる。 ただしX1<X2, Y1<Y2, X1∈[-∞, ∞), X2∈(-∞, ∞], Y1∈[-∞, ∞), Y2∈(-∞, ∞] (表記が適当なので間違っているかもしれません。雰囲気で(笑)) このほかにこの方法でp, qを表せるような領域はないでしょうか?

  • 自然数の解(x,y)

    x,yは自然数。 f(x,y)はx>=y のときは、x^2-2x+y+1で、x<yのときは、y^2-x+1である。 (1) f(x,y)=11を満たす、(x,y)を求めよ。   これは、分かりました。 (2) 任意の自然数nに対して、f(x,y)=n の解は必ず存在し、しかもそれは、ただ1つである。   ア.x^2-2x+y+1=nを満たすx>=yとなる解が存在するとき      このことから、考えられる条件は、1つはxは実数だから、判別式から、n>=y また、x^2-2x+y+1=nとx>=yから、x^2-x-n+1>=0が導かれる。   イ.y^2-x+1=nを満たすx<yとなる解が存在するとき     y^2-x+1=nとx<yから、y^2-y+1-n<0となる。   このあと、アとイから、どうしていいのか分かりません。   解が存在することを示すためには何が言えればよいのかを考えましたが、自然数という条件を   (1)の場合は使えましたが、(2)の場合はどう使えばいいのかわかりません。   よろしくアドバイスをお願いします。   

  • x,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xy

    x,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xyの最大値を求めよ 解き方を教えてください よろしくお願いします

  • 「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小

    「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、  解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、     =…={x-(y+2)}^2+y^2-2y+4       これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。   ここで、g(y)=y^2-2y+4 とおくと、           (省略) と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、 y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通りのどれでしょうか?  (1)y^2+Z+4 → y^2+Z+4 , (2)y^2+Z+4=y^2+(Z+4) より、z+4 ,  (3)y^2+Z+4=y^2+(Z+4) より、z+4は1次関数なので、最小値はもたない また、y^2+z^2+4となるtの式が有った場合、tの最小値は、  y^2+z^2+4 → y^2+z^2+4=y^2+(z^2+4) より、4  で合っているでしょうか?

  • 点P(x+y、xy)の軌跡を求めよ。について

    チャートにも載っている(数IIB例題103)有名問題ですが、 実数x、yがx^2+y^2=1という関係を満たしながら動くとき点P(x+y、xy)の軌跡を求めよ。 というものですが、 解答 X=x+y, Y=xyとおく。 x^2+y^2≦1から、(x+y)^2-2xy≦1 よって、X^2-2Y≦1 ゆえに Y≦(X^2/2)-(1/2) ---(1) までは分かるのですが、 ここで、 また、x,yは2次方程式t^2-(x+y)t+xy=0 すなわちt^2-Xt+Y=0 ---(2) の2つの実数解であるから、 (2)の判別式をDとすると D=X^2-4Y≦0 と、全く関係ないtや、2次方程式が出てくるのか分かりません。 「解説には、x,yは実数であるから、点(X,Y)の領域に制限がつく。 x,yを解とするtの2次方程式t^2-(x+y)t+xy=0すなわちt^2-Xt+Y=0において、 解x,yは実数であるから 判別式D=X^2-4Y≦0 」 とありますが、X,Yと置き換えから、x,yから来る制限は理解できますが、突然tの二次方程式が何故出現するのか分かりません・・・ どなたかよろしくお願い致します。

  • x^4+y^4

    x+y, x^2+y^2, x^3+y^3 はみな整数だが x^4+y^4 は整数ではない、をみたすような 実数 x, y の例ってどんなものがありますか?