xy平面上の点P(x, y)の動く範囲を考える

このQ&Aのポイント
  • 実数x, yがx^2 + y^2≦1を動くとき, (x + y, xy)が動く範囲を座標平面上に図示する問題を考える。
  • 問題を少し拡張して、「xy平面上の点P(x, y)が領域D(x, y)の周および内部を動くとき(ax + by, cxy), abc≠0の動く範囲」を考える。
  • この問題では、(p, q) = (ax + by, cxy)とおきX = acx, Y = bcyとおくと、(cp, abcq) = (X + Y, XY)と変換される。X, Yはtの二次方程式f(t) = t^2 - (X + Y)t + XY = t^2 - cpt + abcq = 0の解なので、この解がD'内にある条件を決定する。D'(X, Y)が対称式で表される場合や領域の形によって解の存在条件が決まる。
回答を見る
  • ベストアンサー

x+y, xy

実数x, yがx^2 + y^2≦1を動くとき, (x + y, xy)が動く範囲を座標平面上に図示せよ。 という問題が受験数学でありますよね。この問題を少し拡張して 「xy平面上の点P(x, y)が領域D(x, y)の周および内部を動くとき(ax + by, cxy), abc≠0の動く範囲」 を考えてみようと思いました。 (p, q) = (ax + by, cxy)とおくX = acx, Y = bcyとおくと (cp, abcq) = (X + Y, XY)と変換され、領域D(x, y)はD'(X, Y)に移される X, Yはtの二次方程式 f(t) = t^2 - (X + Y)t + XY = t^2 - cpt + abcq = 0 の解なので、この解がD'内にある条件を決定する。 (1) D'(X, Y)がXとYの対称式で表される場合、pとqに変換できる。+実数条件。 (2) D'(X, Y)がX1≦X≦X2, Y1≦Y≦Y2というような領域の場合、解の存在条件からpとqに書き換えられる。 ただしX1<X2, Y1<Y2, X1∈[-∞, ∞), X2∈(-∞, ∞], Y1∈[-∞, ∞), Y2∈(-∞, ∞] (表記が適当なので間違っているかもしれません。雰囲気で(笑)) このほかにこの方法でp, qを表せるような領域はないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

u = ax, v = bx, r = uv と置くと、 (u,v) → (p,r)=(u+v,uv) の変換は 基本問題どおり、 (x,y) → (u,v)=(ax,by) (p,r) → (p,q)=(p,(c/ab)r) の変換は 軸ごとの定数倍ですから、簡単です。 あとは、それらを合成するだけ。 順を追って、D を変形してゆきましょう。

その他の回答 (1)

  • take_5
  • ベストアンサー率30% (149/488)
回答No.2

簡単なことだろう。 ax =α、 by=βとすると、abxy=αβであるから、X=ax + by、Y=cxy=(c/ab)αβ。 c/ab=kとすると、X=ax + by=α+β、Y=cxy=(c/ab)αβ=kαβ。 従って、αとβはt^2-Xt+(1/k)Y=0. 対称式の場合は簡単だろう。 そうではない場合は、xとyをXとYで表し、条件にぶち込むだけ。 a、b、cが全て定数であるにしても、計算が面倒であるだけで、大して意味のない事だよ。

関連するQ&A

  • 点P(x+y、xy)の軌跡を求めよ。について

    チャートにも載っている(数IIB例題103)有名問題ですが、 実数x、yがx^2+y^2=1という関係を満たしながら動くとき点P(x+y、xy)の軌跡を求めよ。 というものですが、 解答 X=x+y, Y=xyとおく。 x^2+y^2≦1から、(x+y)^2-2xy≦1 よって、X^2-2Y≦1 ゆえに Y≦(X^2/2)-(1/2) ---(1) までは分かるのですが、 ここで、 また、x,yは2次方程式t^2-(x+y)t+xy=0 すなわちt^2-Xt+Y=0 ---(2) の2つの実数解であるから、 (2)の判別式をDとすると D=X^2-4Y≦0 と、全く関係ないtや、2次方程式が出てくるのか分かりません。 「解説には、x,yは実数であるから、点(X,Y)の領域に制限がつく。 x,yを解とするtの2次方程式t^2-(x+y)t+xy=0すなわちt^2-Xt+Y=0において、 解x,yは実数であるから 判別式D=X^2-4Y≦0 」 とありますが、X,Yと置き換えから、x,yから来る制限は理解できますが、突然tの二次方程式が何故出現するのか分かりません・・・ どなたかよろしくお願い致します。

  • P(x+y, xy)の動く範囲

    点(x, y)が x^2+y^2≦1 の範囲を動くとき、点P(x+y, xy)が動く範囲を求める. 上記の例題を考えるとき、 p=x+y, q=xyとおくなどして、pとqの関係式を導きますよね(q≧1/2*p^2-1/2)。 さらに、手元の解説には「x, yの実数条件も忘れないように」と書いてあります。 そこで質問なのですが、 示すべきものは、「x+y, xyの実数条件」ではないのでしょうか? 「x, yが実数…(1)」ならば「x+y, xyが実数…(2)」 は真であり、(1)は(2)の十分条件ですが、 (2)の条件が欲しいとき、その十分条件(1)を示せばそれでよいのですか? (2)の必要十分条件にあたるものを示さなければならないのではないのですか? 至らぬ質問ですみません。文系青年なのでご容赦ください。

  • 実数x、yが不等式x^+xy+y^≦3をみたすときX=x+y、Y=xy

    実数x、yが不等式x^+xy+y^≦3をみたすときX=x+y、Y=xyについて点(X、Y)の存在する範囲を図示せよ。 ○解説 ここで、x、yはt^ーxt+Y=0のかいである。x、yは実数なのでD≧0よりx^ー4y≧0よってY≦1/4x^になる。 解説の意味がわからないので詳しくわかるかたおねがいします

  • (x^2)y-xy'+y=(x^2)について

    (x^2)y-xy'+y=(x^2)について (1)x=e^t とおくときyが満たすtに関する微分方程式を求めよ (2)(1)の一般解を求めよ という問題です。 xをただ代入してyをtで表せばいいんでしょうか? よろしくお願いします。

  • Q(p+q, pq)の動く範囲で,y≧0の条件?

    ご教示お願いします。 問題:座標平面上の点 ( p, q )は x^2 + y^2 ≦8, y ≧ 0 で表される領域を動く。 点Q (p+q, pq )の動く範囲を図示せよ。 この解答で,X = p+q, Y = pq とおいて,XとYの関係式 X^2 - 2 Y ≦ 8 ・・・・・・(1) を作り,かつ, t^2 - Xt + Y =0 ・・・・・・(2) が実数解を持つことから,この判別式 D = X^2 - 4 Y ≧ 0 ・・・・・・ (3) までは考えたのですが, 問題にある“ y ≧ 0” をどのように反映させてよいかがわかりません。 よろしくお願いいたします。

  • y=x^3+ax^2+x+1が極値を持つa範囲

    y=x^3+ax^2+x+1が極値を持つのはaの値の範囲がどのような時か? 解いてみると y=x^3+ax^2+x+1が極値を持つ条件は,2次関数y’=3x^2+2ax+1の符号が変わる実数xがあることが条件ですから,D>0です D/4=a^2-3>0 で  a<-√3,  √3>aになります ここで質問なのですが,y’=3x^2+2ax+1の符号が変わる実数xとありますが、なぜ実数なのですか? 異なる2つの虚数解ではダメな理由はなんでしょうか まあy=ax^2+bx+cの頂点が(-b/2a,-D/4a)よりD<0だからy座標-D/4aがx軸と交点を持たないのは明らかだからD<0ではだめなのは分かります。 しかしax^2+bx+c=0となる異なる2つの虚数解はあるわけで,この虚数解は符号が変わる虚数xにはならないのでしょうか? すいませんが今の高校では複素数,虚数,共役複素数は習いますが、複素数平面などは習わないので虚軸とかも全くわかりません  虚数というのも 教科書にはb≠0である複素数a+biを;虚数という と書いてるくらいなのでよく分からないです 一応wikiとかで調べましたが

  • 高校数学 点(x+y,xy)の動く領域は?

    娘に質問され、困っています。助けてください。よろしくおねがいします。 問題「実数 x,,y が条件-2≦x+y≦2を満たすとき、点(x+y,xy)の動く領域を求めよ。」

  • 「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小

    「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、  解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、     =…={x-(y+2)}^2+y^2-2y+4       これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。   ここで、g(y)=y^2-2y+4 とおくと、           (省略) と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、 y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通りのどれでしょうか?  (1)y^2+Z+4 → y^2+Z+4 , (2)y^2+Z+4=y^2+(Z+4) より、z+4 ,  (3)y^2+Z+4=y^2+(Z+4) より、z+4は1次関数なので、最小値はもたない また、y^2+z^2+4となるtの式が有った場合、tの最小値は、  y^2+z^2+4 → y^2+z^2+4=y^2+(z^2+4) より、4  で合っているでしょうか?

  • 11x^2+12xy+6y^2=4 のとき、

    11x^2+12xy+6y^2=4 のとき、 x^2+y^2の最小値を求めよ。 高校生のレベルでの解答はどうなるでしようか。 領域を考えようとしましたが、わかったところでうまくいかないように おもえる。次に、条件の式の式変形を考えたが、5x^2+(x+y)^2=4程度で この先の目どがたたない。 よろしくお願いします。

  • x,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xy

    x,yが2x^2+3y^2=1をみたす実数のとき、x^2-y^2+xyの最大値を求めよ 解き方を教えてください よろしくお願いします