• 締切済み

Xの3乗+Yの3乗=Zの3乗

Xの3乗+Yの3乗=Zの3乗 をみたす3つの自然数は存在しないことを示せ。 考え方をおしえてください(;_;)

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.4

(長文のため一部省略しました) Z=(全整数) ω=(-1+√-3)/2 Z(ω)={t+uω|t,u∈Z} λ=1-ω S_0={(x,y,z)|x^3+y^3=z^3,x,y,zは自然数} 自然数mに対して, S(m)={(x,y,z,ε)| x^3+y^3=ε(λ^{3m})z^3 ,xyz≠0 ,x,y,z,λはZ(ω)で2つずつ互いに素 ,εはZ(ω)の単数} とする (補1)Z(ω)∋ξ≠0(modλ)の時→ξ=±1(mod9),(証略) (補2)S_0≠φの時→S(m)≠φとなる自然数mが存在する,(証略) (定理)S_0=φ 証) ある自然数mに対して S(m)≠φと仮定すると (x,y,z,ε)∈S(m) が存在する x,λは互いに素だから (補1)から x^3=±1(mod9) y,λは互いに素だから (補1)から y^3=±1(mod9) だから x^3+y^3=(±2.or.0)(mod9=ωλ^4) x^3+y^3=±2(mod9)を仮定すると x^3+y^3=±2≠0=ε[λ^{3m}]z^3=x^3+y^3(modλ^3) と矛盾するから x^3+y^3=0(mod9) x^3+y^3=9ηとなるη∈Z(ω)がある 9=ωλ^4だから ωηλ^4=x^3+y^3=ε[λ^{3m}]z^3 m=1のとき ωηλε^{-1}=z^3 λがzの約数となって λとzが互いに素である事に矛盾するから S(1)=φ m≧2のとき S(m-1)=φと仮定する x^3+y^3=(x+y)(x+yω)(x+yω^2)=(λ^{3m})z^3……(1) (x+y),(x+yω),(x+yω^2)の3つの因数の内 どれかはλの倍数だが これらの3つの因数の内のどれかはλで割れる x+y=0(modλ)→x+yω=(x+y)-yλ=0(modλ) x+yω=0(modλ)→x+yω^2=(x+yω)ω+xλ=0(modλ) x+yω=0(modλ)→x+y=(x+yω)+yλ=0(modλ) x+yω^2=0(modλ)→x+y=(x+yω^2)-yλω^2=0(modλ) だから3つともλの倍数。 どれか1つはλ^2の倍数 x+y=x+yω=0(modλ^2) →yλ=(x+y)-(x+yω)=0(modλ^2)→y=0(modλ) →xλ=(x+yω)-ω(x+y)=0(modλ^2)→x=0(modλ) →x,yが互いに素に矛盾する x+yω=x+yω^2=0(modλ^2) →xλ=(x+yω^2)-(x+yω)ω=0(modλ^2)→x=0(modλ) →yλω=(x+yω)-(x+yω^2)=0(modλ^2)→y=0(modλ) →x,yが互いに素に矛盾する x+y=x+yω^2=0(modλ^2) →xλ=(x+y)-(x+yω^2)ω=0(modλ^2)→x=0(modλ) →yλ(1+ω)=(x+y)-(x+yω^2)=0(modλ^2)→y=0(modλ) →x,yが互いに素に矛盾するから 3つの因数のどれか1つだけλ^2の倍数となる 3つの因数のどれか2つはλだけの倍数で 他の1つはλ^{3m-2}の倍数となる x+yω=0(modλ^{3m-2})の時yとyωを交換し x+yω^2=0(modλ^{3m-2})の時yとyω^2を交換すれば x+y=0(modλ^{3m-2})となる x+y=(λ^{3m-2})κ…………………(2.1) x+yω=λμ…………………(2.2) x+yω^2=λν…………………(2.3) κ,μ,νはλの倍数でない κ,μ,ν∈Z(ω)がある 3つの因数がλ以外の公約数があるならばそれは x+yω-(x+y)=-yλ x+yω^2-(x+yω)ω=xλ の公約数、したがってx,yの公約数になるが x,yは互いに素だから 3つの因数はλ以外の公約数を持たないから κ,μ,νは互いに素 (1)と(2.1)(2.2)(2.3)から κμν=εz^3 だからZ(ω)での素因子分解の一意性から κ,μ,νはそれぞれ立方数又は立方数の同伴数となる κ=-ε1α^3 μ=-ε2β^3 ν=-ε3γ^3 β,γ,αは互いに素でλとも素で,ε1,ε2,ε3は単数となるものがある (2.1)(2.2)(2.3)にこれを代入すると x+y=-ε1(λ^{3m-2})α^3 x+yω=-ε2λβ^3 x+yω^2=-ε3λγ^3 だから A= (1,1,ε1(λ^{3m-2})α^3) (1,ω,ε2λβ^3 ) (1,ω^2,ε3λγ^3 ) X=(x,y,1)^t=((x,y,1)の転置縦ベクトル) とすれば AX=0 X≠(0,0,0)^t だから |A| = |1,1,ε1(λ^{3m-2})α^3|=0 |1,ω,ε2λβ^3 | |1,ω^2,ε3λγ^3 | だから (ω^2-ω)ε1(λ^{3m-2})α^3+(1-ω^2)ε2λβ^3+(ω-1)ε3λγ^3=0 ↓ ε2β^3+ωε3γ^3=(1+ω)ε1(λ^{3(m-1)})α^3 だから δ=ωε3/ε2 δ'=(1+ω)ε1/ε2 とするとδ,δ'は単数で β^3+δγ^3=δ'(λ^{3(m-1)})α^3 β,γはλで割り切れないから(補1)から β^3=±1(mod9) γ^3=±1(mod9) m>1だから δ'(λ^{3(m-1)})α^3=0(modλ^3) だから ±1±δ=0(modλ^3) |δ|=1<3√3=|λ^3| だから δ=±1 γとδγを交換しε'=δ'すると β^3+γ^3=ε'(λ^{3(m-1)})α^3 となって (β,γ,α,ε)∈S(m-1) S(m-1)=φに矛盾するから S(m)=φ ∴任意の自然数mに対して S(m)=φ (補2)からS_0=φ

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

3乗に限定すれば「360年」もかかってないですけどね>#2. 4乗は (不完全だけど) フェルマー, 3乗はオイラーでしたっけ.

  • BASKETMM
  • ベストアンサー率29% (240/806)
回答No.2

こんな難しい問題をこの欄で解くのは無理です。 最初に問題を出した人がいて、360年後に初めて解けた問題ですから。 真面目に答えます。 これはフェルマー(フランス人)が出した問題です。徳川家光の時代です。 解いたのはワイルズ(イギリス人)。1993年です。 解決に貢献したのは谷山豊、志村五郎(日本人)。貢献した人は他にも沢山おられます。 志村先生は今もご存命です。(多分80歳くらい)

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

X^3+Y^3=(X+Y)(X^2+Y^2-XY) これがZ^3になると仮定すると 矛盾がおこることを示せば良いでしょう。 矛盾が起きた原因はZ^3になる仮定ですからそれが否定されることで証明できるでしょう。

関連するQ&A

  • x+y+z=42のときできる三角形はいくつ?

    x+y+z=42のとき3つの自然数x,y,zを3辺の長さとする三角形はいくつできますか? という問題なんですか教えてもらえないでしょうか、、、 お願いします。

  • 1/x+1/y+1/z=1/2

    を満たすx、y、zの組(x、y、z)の中でxが最大となる組を求めよ ちなみにx、y、zはx<y<zになる自然数とする という問題で、1/2=1/x+1/y+1/z<1/x+1/x+1/x=3/xからx<6まで分かったんですがここからが分かりません! xが5のとき1/5+1/y+1/z=1/2⇔1/y+1/z=3/10と代入してみてもだからなんなのかが分からずこれ以上進めません 解説お願いします!

  • x^2+y^2=z^2 x,y,zは自然数。

    x^2+y^2=z^2 x,y,zは自然数。 これを満たす(3,4,5)から、他の解を生成していくときの x,y,zにあたる部分の式を作りたいを思うのですが、 どう考えれば作れるるのでしょうか よろしくお願いします。

  • p2乗=x3乗+y3乗のときの素数pを求める

    次の問題がわかりません。教えてください。 自然数x, y を用いて, p^2 = x^3 + y^3 (1) (^2, ^3 はそれぞれ2乗,3乗を表す)のとき, 素数pを全て求めよ。 また,このときのx, yを全て求めよ。 (1)式の左辺が2乗ですから,右辺がある数の2乗になればいいのかな,と思うのですが, これ以上わからず, ご回答のほど,よろしくお願いいたします。

  • x+y+z=8を満たすx,y,zの自然数の組は何通りあるか。

    x+y+z=8を満たすx,y,zの自然数の組は何通りあるか。 解答は以下の通りです。 X=x-1,Y=y-1,Z=z-1とおくと, x+y+z=8は(x-1)+(y-1)+(z-1)=5よりX+Y+Z=5 X+Y+Z=5となる負でない整数の組を数えればよいので 答えは7!/5!2!=21(通り) 「X=x-1,Y=y-1,Z=z-1とおく」と 「X+Y+Z=5となる負でない整数の組を数えればよい」が 何故そうなるのかわかりません。 「X=x-1,Y=y-1,Z=z-1とおく」のは、 自然数を表すためかな?とも思ったのですが・・・。 宜しくお願いします。

  • Y=Xの(1/2)乗の微分について。

    Y=Xの(1/2)乗 の微分は、 『Y=Xのn乗の微分公式Y'=nXの(n-1)乗』を用い、 Y'=(1/2)Xの(-1/2)乗になります。 ところで上の微分公式について、nが自然数の時は微分の定義に式を入れ、展開していって理解ができますが、nが自然数以外(分数)のときでもどうして成り立つかを、おしえて下さい。 ※電気関係の試験勉強のため、数学を復習し直している者です。学校では、何の疑問も無かった(もしかすると疑問があっても考える余裕が無かった)箇所で詰まってしまって・・・

  • (x+y-1)/(x-y)=(y+z-1)/(y-z)=(z+x-1)

    (x+y-1)/(x-y)=(y+z-1)/(y-z)=(z+x-1)/(z-x)のとき (1)x+y+z=3/2 (2)x^2+y^2+z^2=xy+yz+zx=3/4 (3){1/(x-1/2)^2}+{1/(y-1/2)^2}+{1/(z-1/2)^2}の値を求めよ。 (1)と(2)の値も問題で、上のような値になりました。 (3)は通分して、(1)と(2)をつかうと、分子が0になってしまい、明らかに答えとしては おかしい。(3)はどうすればよいのでしょうか。よろしくおねがいします。

  • z=x^2-6xy-40y^2

    z=x^2-6xy-40y^2として、x、y、zが素数のとき、zの最小値を求めよ、という問題があったのですが z=(x+4y)(x-10y)と因数分解するとこまでできたのですがここからどうしたらよいのかわかりません。 誰か教えてください・・・

  • x/(y+z)=y/(z+x)=z/(x+y)の時の値を求めよ

    x/(y+z)=y/(z+x)=z/(x+y)の時の値を求めよ

  • x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

    クリックありがとうございます(∩´∀`)∩  ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。 この問題について説明をお願いします。