• ベストアンサー

定積分について質問です

定積分 ∫(範囲:0~1)x^m(logx)^ndx を漸化式を使って求めよ。 (ただし、m、nは0または正の定数)  という問題が解けません。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

∫(範囲:0~1)x^m(logx)^ndx をS(m,n)などと置いて、部分積分を用いてS(m,n-1)との関係式を作れば、それが漸化式になります。S(m,0)を初項にとれば、後はすんなりいくような。

BAD-RYOCHAN
質問者

お礼

解けました!

BAD-RYOCHAN
質問者

補足

S(m,0)=1/(m+1)となりました。 これをどのように使うのですか?  漸化式の使い方がいまいちわかりません

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 積分の質問です

    塾で、 ∫(ax+b)^ndx = {1/a*(n+1)}(ax+b)^(n+1)+C という式を習った記憶があるのですが、 これはC以外を[ ]でくくると定積分でも使えますか? というのも、 f(x)=2∫(3xt+1)^2dt-{∫(3xt+1)}^2-16xdt (定積分の区間はは2と0です) をxの整式として表せ。 という問題の左側の積分の方で使った所、 x^(-1) を含む式が出てきてしまいました。普通に展開してから解くと、 f(x)=12x^2-16x となります。 見にくい式ばかりで申し訳ないですが、どこが間違っているのか教えて頂けるとありがたいです。

  • 積分

    定積分 -∫xexp(-x/N) dx を0から∞までの定積分はどうやるのでしょうか。 N:定数 ∫xexp(-x/N) dx=x^2/2 ・exp(-x/N)  +1/N∫exp(-x/N) dxですか

  • 積分の証明問題を解いて下さい

    n≧2のとき ∫logx dx <log n 定積分の範囲はn+1/2, n-1/2です

  • 漸化式の極限の求め方。

    質問です。よろしくお願いします。大学受験問題です。 自然数nについて定積分InをIn=s(1→e)x^2(logx)^ndx とおく。このとき、次の各問に答えよ。 1、1≦x≦eにおいて、不等式logx≦x/egが成り立つことを示せ。 2、lim(n→∞)Inを求めよ。 1、はできました。 2はIn=e^3/3(logx)^e-n/3(In-1) のところまではできましたが、その後がわかりませんでした。 どなたか判る方はアドバイスをお願いいたします。

  • 積分漸化式

    (1)∫x^(n/2)/(x(1-x))^(1/2)dx (0→1) (2)∫x^(2n-1)e^(-x^2)dx   (0→+∞) (3)∫(1-x^2)^ndx       (0→1) いずれも漸化式がたれらそうでたてられません。まず(1)に関しては部分積分を使ってみましたがなにが積分されるほうで、なにが微分するほうか分からないのです。(2)に関してはx^2をtとおけば有名なガンマ関数になりました。けど解けません。

  • 定積分

    -∫xexp(-x/N) dx を0から∞までの定積分はどうやるのでしょうか。 N:定数 ∫xexp(-x/N) dx=x^2/2 ・exp(-x/N)  ー1/N∫exp(-x/N) dxですか

  • 定積分

    -∫xexp(-x/N) dx を0から∞までの定積分はどうやるのでしょうか。 N:定数 ∫xexp(-x/N) dx=x^2/2 ・exp(-x/N)  ー1/N∫exp(-x/N) dxですか

  • 非有界区間の積分と極限

    ∫[0,∞]e^(-x^2)dx=√π/2 を示すために e^x>x+1(x≠0)(x=0での一次近似) より 両辺にx=x^2とx=-x^2を代入すると 1-x^2<e^(-x^2)<1/(1+x^2)……(1) (1)のそれぞれのグラフの形に留意しながら定積分の値を定めて それぞれをn乗してから定積分しても大小関係は変化しないので ∫[0,1](1-x^2)^ndx<∫[0,∞]e^(-nx^2)dx<∫[0,∞]1/(1+x^2)^ndx ここで x=cosθと置換すると ∫[0,1](1-x^2)^ndx=∫[0,π/2]sin^(2n+1)θdθ x=1/tanθと置換すると ∫[0,∞]1/(1+x^2)^ndx=[0,π/2]sin(2n-2)dθ また I_n=∫[0,π/2]sin^nθdθ は1≦nにおいて I_2n=π/2・1/2・3/4・5/6・7/8…(2n-1)/2n=πΠ[k=1,n](2k-1)/2k I_(2n+1)=1・2/3・4/5・6/7・8/9…2n/2n+1=Π[k=1,n]2k/(2k+1) となる。 更に √n・x=yとおくと ∫[0,∞]e^(-nx^2)dx=1/√n∫[0,∞]e^(-y^2)dy なので 求める定積分は √n・I_(2n+1)<∫[0,∞]e^(-x^2)dx<√n・I_(2n-2) ここまでは自力でたどり着いたのですが lim[n→∞]I_(2n+1)→√π/2 が示せなくなってしまいました。。。 これさえ示せれば証明できるのですが。。。 どなたかご教授お願いします。

  • 積分・・・数列??

    この後、小問がいくつか続くのですが、まったく手がつかずどうしようもないので、アプローチの方法等を教えていただきたくて質問しました。私はfn(x)とfn+1(x)で漸化式を立てましたが、できず。 fn(x)のn階微分がlogxであると考えやってみましたが、無理でした^^;問題(一部)は以下のとおりです。 自然数nに対してfn(x)(x>0)を次のように定める。 f1(x)=∫(インテブラルの1~x)logt dt fn+1(x)=∫(インテブラルの1~x)fn(x) このとき極限An=lim(x→∞)fn(x)/(x^n・logx)の値をnで表せ。 以下略 よろしくお願いいたします。

  • 不定積分∫(sin x)^(-4)(cos x)^(-2)dxの計算

    「解析学序説」上(一松信)p77の不定積分∫(sin x)^(-4)(cos x)^(-2)dxに挑戦してみました。I(m,n)=∫(sin x)^m(cos x)^ndxの漸化式を何回か使うと結果が出るのですが、私の出した式と巻末解答とがあまりに違いすぎるのです。 (1)  I(-4,-2)=1/(((sin x)^3)cos x) - 4cos x/3(sin x)^3 - 8cos x/3sin x (私が出した解答、または通分すると(2)になります) (2)  (3 - 12(cos x)^2 + 8(cos x)^4)/(3(sin x)^3)cos x ところが、巻末解答は次のようです。 (3)  -1/(3((sin x)^3)cos x) - (8/3)cot 2x   * 巻末解答には、8/3(正)と3/8(誤)の誤植があります。 (2)と(3)とはかなり違った形をしていますが、(3)を2倍角の公式を使って計算していくと(2)になりますので、一件落着というわけですが、どうも気にかかることがあります。 ## I(m,n)=∫(sin x)^m(cos x)^ndxの漸化式を使うとまず、(1)に到達するのではないでしょうか。すると(1)から(2)を出すのは簡単としても、(2)から同値変形をしていって(3)に達するのはかなり大変な作業ではないかと思われるのになぜ、(1)または(2)で止めなかったのか不思議です。 なお、岩波全書の「数学公式1」 P183も丸善の「数学大公式集」(大槻義彦 訳、1983年)P139も I(-4,-2)を上の(3)で与えてあります。わざわざcot2xにする必要はあるのでしょうか? 何か全く別の観点からの算出という感じがしてならないのですが、思い過ぎでしょうか? ご指導、よろしくお願いいたします。