• ベストアンサー

ピタゴラス数に対してトレミー数(造語)を考える

ピタゴラスの定理を満たす自然数、つまり、整数辺の直角三角形の3辺は、ピタゴラス数と呼ばれます。 それは、整数辺長方形で対角線も整数のものを考えることと同じです。 ところで、整数辺四角形で、対角線も整数になるものは、存在はするようです。 http://mathworld.wolfram.com/RationalQuadrilateral.html しかし、一般解がどうなるのかは知りません。(これも知っている方がいれば教えてください) すると、気になるのは、円に内接する整数辺四角形で、対角線も整数になるものは、存在するのでしょうか?ただし、整数辺の直角三角形の斜辺を張り合わせてできる四角形は、自明なので除くものとします。 代数的に言いかえると、平面上の4点間の6種類の距離は、六斜術とかCayley–Menger determinants(必要であれば検索してください)という関係式を満たすのですが、 さらにトレミーの定理の関係式を満たすような6つの自然数の組は存在するのでしょうか?

  • dfhsds
  • お礼率31% (100/319)

質問者が選んだベストアンサー

  • ベストアンサー
  • htms42
  • ベストアンサー率47% (1120/2361)
回答No.1

等脚台形でもよければ2つの対角線の長さが等しいですからチェックが簡単になります。 60°の場合は計算が簡単です。 たくさんあります。 (上辺、下辺、左右の辺、対角線) (3,8,5、7) (5,8,3,7) (5,21,16,19) (16,21,5,19) ・・・・・・・・・・・・・・・・ 60°の三角形  a^2=b^2+c^2-bc 120°の三角形 a^2=b^2+c^2+bc aを共通にして2つの三角形をくっつけます。 四辺形が2つ出来ます。1つは等脚台形です。 等脚台形でない方の四辺形については、aではない方の対角線が整数になっているかどうかのチェックが難しいです。(「六斜術」に載っている式に一番簡単な(3,8,5,7)を当てはめた場合でも計算が大変です。やろうという気にはなれません。やってみてください。) b=2m+1として奇数で変化させていきます。 a=3m(m+1)+1は解の一つです。そのaに対して 60°の場合、c=a+(m+1) 120°の場合、c=a-(m-1) になります。 (a,b,c)がであれば(a,b,b-c)(b>cの時)、(a,c-b、c)(c>bの時)も解ですから2つの等脚台形を作ることができます。 http://okwave.jp/qa/q6439403.html 

関連するQ&A

  • ピタゴラスの定理に出てくるふたつの不変量の間の関係

    ピタゴラスの定理を考える直角三角形の斜辺とそれぞれの残りの辺が作る角度の和はπ/2と一定ですが、この不変量と斜辺の長さを一定にしたときのピタゴラスの定理によって示される残りの2辺の二乗の和が斜辺の二乗に等しいという不変量との関係はどのように理解すればよいのでしょうか。角度が面積に対応しているようにも思えるのですが・・・

  • ピタゴラスの定理を証明してください。

     ピタゴラスの定理(三平方の定理)を証明してください。 直角三角形の斜辺の長さをa、残りの直角に接している2辺をb,cとおくと、 a^2=b^2+c^2 となるという定理です。  今、この証明について、20種類以上の解法を探しています。 よろしくお願いします。

  • ピタゴラスの定理と角度の関係?

    直角三角形の斜辺を直径とする円を考え、直角を挟む二辺をそれぞれA,Bとしたとき円の中点からA,Bを挟む角度を、<A,<Bとすればこの二つの和は常にπとなりますがこれは斜辺Cを挟む角度でもあります。即ち<A+<B=<Cとなります。これをピタゴラスの定理A^2+B^2=C^2と対応させると<AがA^2に、<BがB~2に、C^2が<C(=π)に対応するように考えるのはどこが誤りなのでしょうか?2辺の角度の和が常にπになることを用いて、ピタゴラスの定理を証明することは不可能なのでしょうか?

  • 半径1の球に内接する立方体の一辺の長さ

    いつもありがとうございます。 タイトルのように、半径1の球に内接する立方体の一辺の長さを問う問題について質問させてもらいます。内接する立方体の頂点のうち、最も遠いものどうしを結ぶ対角線と、立方体の一辺、およびそれを√2倍した斜辺からなる、直角三角形での三平方の定理で、すぐに解けるようです。そして答えは2/√3となります。ここで、最初の「最も遠いものどうしを結ぶ対角線」は、球の中心を通る(ゆえに長さ2)直線である必要があります。これは当然のようにも思いますが、改めて考えると、自明とも思えないような気がしてきました。最も遠いものどうしを結ぶ対角線は球の中心を通る直線であることを直感的に理解する方法はありますでしょうか。あるいはそれなりの証明が必要でしょうか。検討違いな質問でしたらすいませんが、どなたかご助言下さい。

  • ピタゴラス数について。

    x^2+y^2=z^2の式を満たす自然数x,y,zをピタゴラス数と呼びますが、x,y,zがすべて素数になる組み合わせはありますか?つまりピタゴラス素数はありますか? もしあるのなら、その組み合わせを教えてください。また無いのならば、なぜピタゴラス素数なるものは存在しないのか、証明していただけるとありがたいです。 ありがとうございます。

  • ピタゴラスの定理において

    ピタゴラスの定理について質問です。 直角三角形において3辺の関係はa^2+b^2=c^2となりますが、 逆に3辺の関係がa^2+b^2=c^2の場合、必ず直角三角形になるのでしょうか? また出来る場合どう証明すればいいのでしょうか? 回答よろしくお願いしますm(_ _)m

  • 小学生がピタゴラスの定理を体感する試みとして

    友人が言っているのですが、紙に直角三角形を買いて、三辺を物差しで実測させ、ピタゴラスの定理と同じ操作で計算させ、確認させればピタゴラスの定理が成立することを納得させられないかということです。実測値を使って計算すれば答えが一致するはずはありませんが、測定する直角三角形の数を増やしていけば納得する子もいるでしょうか。何か盲点のようなものがあるのではないかと思います。自分で実際やってみても、あまり実感できません。

  • ピタゴラスの定理、C^2=A^2+B^2をB^2=C^2-A^2にして

    ピタゴラスの定理、C^2=A^2+B^2をB^2=C^2-A^2にして更にB^2=C^2+(Ai)^2とするとBが斜辺で残りの1辺が虚数である3角形(?)になりますが、このことを直角の位置が移動することも含めて幾何学的にイメージすることは可能でしょうか。

  • ピタゴラス数の生成とは?

    ピタゴラス数とは  x^2+y^2=z^2 を満たす自然数(もしくは整数)x、y、zの組のことです。 そのピタゴラス数を(3,4,5)から出発して、次々と生成していく方法があるようです。 http://hamada.ddo.jp/home/math/pythagoras.aspx や http://www.hokuriku.ne.jp/fukiyo/math.html を参考にしてください。 しかし、そこでは証明は述べられていませんし、単なる推測として書かれているだけです。 ピタゴラス数の生成について、もっと正確に主張できることはあるのでしょうか? 証明の概略や、証明が書いてあるweb siteがあれば教えていただけないでしょうか? また、 x^2+y^2=z^2 はxyz空間の曲面とみなすことが出来ます。 その幾何学的な観点では、ピタゴラス数の生成はどういった意味を持つのでしょうか?

  • 数論が専門の方へ、ピタゴラス数からピタゴラス多項式、ピタゴラス行列を考えると

    正の整数の組 a,b,c がピタゴラスの定理 a^2 + b^2 = c^2 を満たすとき、組 (a,b,c) のことをピタゴラス数という。 原始ピタゴラス数は、互いに素な正の整数 m,n に対し、一方が偶数の時 a = |m^2 - n^2| b = 2mn c = m^2 + n^2 により、得られることが知られている。 また、(3,4,5)にある行列を掛けていくことによっても生み出されることも聞きました。 上の話で、整数のところを、(整数係数もしくは複素数係数の)多項式、(整数成分もしくは複素数成分の)行列と変化させるとどういった理論が知られているのでしょうか? 例えば、いわゆる原始ピタゴラス多項式と呼ばれるものは、 互いに素な多項式 f(x),g(x) に対し、 a = |f(x)^2 - g(x)^2| b = 2f(x)g(x) c = f(x)^2 + g(x)^2 と表されたりするのでしょうか?