• ベストアンサー

半径1の球に内接する立方体の一辺の長さ

いつもありがとうございます。 タイトルのように、半径1の球に内接する立方体の一辺の長さを問う問題について質問させてもらいます。内接する立方体の頂点のうち、最も遠いものどうしを結ぶ対角線と、立方体の一辺、およびそれを√2倍した斜辺からなる、直角三角形での三平方の定理で、すぐに解けるようです。そして答えは2/√3となります。ここで、最初の「最も遠いものどうしを結ぶ対角線」は、球の中心を通る(ゆえに長さ2)直線である必要があります。これは当然のようにも思いますが、改めて考えると、自明とも思えないような気がしてきました。最も遠いものどうしを結ぶ対角線は球の中心を通る直線であることを直感的に理解する方法はありますでしょうか。あるいはそれなりの証明が必要でしょうか。検討違いな質問でしたらすいませんが、どなたかご助言下さい。

  • haru84
  • お礼率93% (221/236)

質問者が選んだベストアンサー

  • ベストアンサー
  • chie65536
  • ベストアンサー率41% (2512/6032)
回答No.1

「最も遠いものどうしを結ぶ対角線を二等分する点をPとする時、各頂点はすべてPと等距離にある」と言う事を証明すれば良いです。 て言うか、立方体に限らず、直方体の場合も「最も遠いものどうしを結ぶ対角線を二等分する点をPとする時、各頂点はすべてPと等距離にあり、Pは球の中心点」が成り立ちますけどね。

haru84
質問者

お礼

さっそくのご回答ありがとうございます。 「最も遠いものどうしを結ぶ対角線を二等分する点をPとする時、各頂点はすべてPと等距離にある」ことの証明とは、まさに例の対角線は球の中心を通ることの証明ですね。その内容は興味深いような、厭わしいような気もします。 立方体に限らず「最も遠い対角線を二等分する点をPとする時、各頂点はすべてPと等距離にあり、Pは球の中心点」とは、いいことを教えていただきました。ありがとうございました。

その他の回答 (2)

  • kkkk2222
  • ベストアンサー率42% (187/437)
回答No.3

x対象性 ○対称性 ごめん

  • kkkk2222
  • ベストアンサー率42% (187/437)
回答No.2

haru84さん 1 あなたが中学生だとしたら、この質問はないでしょう 2 高校生だとしたら   *かなり数学得意と思われます   *対象性より自明と言う人もいると思います     *対象性はないがしろにされている     *対象性を使いすぎている      両方の考えがあります 3 例1 対頂角は等しい 証明必要でしょうか?   例2 円に内接する最大面積の四角形は正方形   例3 円に内接する最大面積の三角形は正三角形     例2は先日偶然証明できました     例3やってみてください、私には無理なようです                  SEE YOU   

haru84
質問者

お礼

ご回答ありがとうございました。 対称性より自明とも言えるのですね。興味深い例題も加えていただきありがとうございます。奥が深い世界ですね。

関連するQ&A

  • 1辺が1の立方体があります。この各頂点の対角線の交点を結んで出来る正八

    1辺が1の立方体があります。この各頂点の対角線の交点を結んで出来る正八面体に内接する球の半径はいくらですか

  • 球に内接する立方体の体積

    (問)半径1の球に内接する立方体の体積を次の中から1つ選べ  8/√6  4π/3√3  8/3√2  8/π√2  8/3√3 (私の考え)最初は、正立方体の場合を考え、球を輪切りにして、その円に内接する正方形の1辺が√2と求まるので、体積は...と考えたら、答えの選択肢がありません(^^;)。 問題解説には1辺が2/√3とあったのですが、どうも理解できません。宜しくお願いいたします。

  • 正四面体に内接する4個の球の半径の求め方

    正四面体に内接する4個の球の半径の求め方 「1辺の長さが6の正四面体ABCDがある。 頂点Aから底面BCDへ引いた垂線の足をHとする。 また、直線BHと辺CDとの交点をMとする。 半径がrの球が4個あり、どの球も他の3個の球と接しており、また、正四面体ABCDはこの4個の球を内部に含み、四面体のどの面も3個の球と接している。 このとき、rの値を求めなさい。」 について、同じ質問をしている方がいましたが、『高校への数学』では 対称性を用いて解答していました。 「正四面体の対称面(2頂点A、Dと辺BCの中点を含む面)で考えると、4個の 球のうち2個の中心がその面上に存在し・・・」と解説してました。 ここでわからないのが、なぜその対称面上に2個の球の中心が存在するのか というところです。 クラスの人に聞いても、「対称性から明らか」と言われてそれ以上詳しく聞けません。 この「対称性から」という、何でもかんでもひっくるめた言い方がいつも気持ち悪く感じます。 私が納得したいのは、 ○ こう言う理由で、2個の円の中心が対称面に存在する ○ こう言う理由で、対称性(面対称、点対称、回転対称)というものが言える(いきなり「対称性から・・・」ではなく) です。 面倒くさい質問かもしれませんが、よろしくお願いします。

  • 立方体に含まれる球の体積

    立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V はいくらになるのでしょうか? 具体的な積分の方法が分からず、 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/ にある「球分」の体積の公式から V = 4πr^3 / 3 - 2πr^2 (a + b + c) / 3 となると考えたのですが、全くの誤りでしょうか?

  • 内接円の半径について

    角Aを直角とする直角三角形ABCでAB=5cm、AC=12cmとするとき、この三角形に内接する円の半径を求める問題があるのですが、この問題を3平方の定理を使って解くことはできないのでしょうか。

  • 四角形の1辺の長さ

    任意の四角形に対し、対角に直線を引いて3角形を2つ作る。対角線を底辺にして頂点と直角で結ぶ。この2つの線で面積は出るが、三角形の残る2辺の長さは求められますか?

  • 体心立方格子の立方体の一辺の長さと原子の半径の関係

    求めようと思っても、どこで原子どうし接していてどこが接していないのかわかりません。 なぜ立方体の対角線方向では原子同士が接していて、立方体の辺の方向には接していないとわかるんですか?図形的センスがなく困ってます。教えてください。 

  • 四面体に内接する球の半径

    『AB=1、AD=2、AE=3の直方体ABCD=EFGHがある。四面体B-AFCに内接する球の半径を求めよ』という問題がありました。三角形AFCの面積と頂点Bから三角形AFCに下ろした垂線の長さなどは求められたのですが、そこからの方針が全くわかりません。体積を求めてどうにかするのでしょうか?よろしくお願いします。

  • 球の体積と表面積。答えが間違ってると思うのです・・

    問。 立方体Aに内接する球Kと外接する球Lがある。 (3)KとLの体積の比を求めよ。 答え。 1:3√3 (1)がAとKの表面積の比、(2)はAとKの体積の比です。 この(3)だけ答えを間違えました。 私の回答は、1:2√2です。 解き方としては、Kの半径をx、球K、Lの中心をOとします。 Oから立方体Aの頂点に引いた直線は球Lの半径になり、 またその直線は、立方体Aに内接する球Kの半径から√2xと分かります。 (直線と内接円の半径から、45°、45°、90°の二等辺三角形が出来るため。) 従って球Lの半径は√2xです。 球の体積の公式から、V=(4/3)πr^3なので、 それぞれ、(4/3π)x^3、(8√2/3)πx^3となりました。 なので体積比は、1:2√2となったのです。 この問題集には詳しい解説が載っておらず、回答と解法の一部が載ってるだけです。 その解法の一部ですが、 「立方体Aの1辺の長さをaとすると、球K、球Lの半径はそれぞれ、a/2、√3a/2」 とありました。 どうして回答を間違えたのか、分かりません。 また、解説の球Lの半径が√3a/2となるのも分からないのです。 この二等辺三角形から、1:1:√2が成り立ち、立方体の1辺をaとするなら、 球Lの半径は√2a/2になると思います。 お手数ですが、ご意見。・ご回答お願いします。

  • 立方体に含まれる球の体積 (再)

    立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V (a, b, c)は どのような関数になるのでしょうか? 可能であれば、積分を用いた解き方のヒントもお願い致します。 これまでに以下のことが分かりました。 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/​ にある「球欠」(球分から円錐を差し引いた立体)の体積は V' = π ( 3 r - h ) h^2 / 3 という公式から求められます。 これは立方体に内接する球が x, y, z 軸の いずれかの方向に h だけ移動したときに はみ出る体積と一致します。 しかしこれを単純に利用しては解けません。 http://okwave.jp/qa3777495.htmlにある Quattro99様の検算を考慮すると、 求めたい関数 V ( a, b, c ) は V ( 0, 0, 0 ) = 4 π r^3 / 3 V ( r, 0, r ) = V ( 0, r, 0 ) = V ( 0, 0, r ) = 2 π r^3 / 3 V ( r, r, 0 ) = V ( r, 0, r ) = V ( 0, r, r ) = π r^3 / 3 V ( r, r, r ) = π r^3 / 6 となります。 なお、質問 http://okwave.jp/qa3777495.html は、誠に勝手ながら締め切りました。 自分自身が書いた文章に誤りが多く ご回答頂く方に混乱を招く恐れがあると判断したためです。 ご迷惑をおかけ致しますが、よろしくお願い致します。