全微分の考え方について

このQ&Aのポイント
  • 全微分とは、曲面を接平面で近似する際の誤差を示すε(Δx,Δy)が0になる条件です。
  • 具体例として、f(x,y)=√(1-x^2-y^2)が(0,0)で全微分可能であることを示しました。
  • 結果として、lim[(x,y)→(0,0)] {(2-(x^2+y^2))/√(x^2+y^2)}/(√(1-(x^2+y^2))+1)=0という式が得られました。
回答を見る
  • ベストアンサー

全微分の考え方について

全微分の考え方について 理解が不十分なので教えてください。 先ず定義ですが Δf=f(x+Δx,y+Δy)-f(x,y)=fxΔx+fyΔy+ε(Δx,Δy)…(1) ただし、 fx、fyは各々で偏微分したもの εは曲面を接平面で近似した時の誤差とする。 このε(Δx,Δy)がベクトル(Δx,Δy)の距離よりも先に0になると良いので。 lim[(x,y)→(0,0)] ε(x,y)/√(x^2+y^2)…(2) この(1)(2)が全微分可能の条件である。 具体例でいきますと、 √(1-x^2-y^2)が(0,0)で全微分可能であると示します。細かい計算は省略しますが、 fx=-x/√(1-x^2-y^2),x=0⇒fx=0 fy=-y/√(1-x^2-y^2),y=0⇒fy=0 f(x+Δx,y+Δy)-f(x,y)=√(1-(x+Δx)^2-(y+Δy)^2)-√(1-x^2-y^2), x,y=0⇒=√(1-(Δx)^2-(Δy)^2)-1 定義に代入して√(1-(Δx)^2-(Δy)^2)-1=ε(Δx,Δy) ∴lim {√(1-x^2-y^2)-1}/√(x^2+y^2)=  lim {√(1-(x^2+y^2))-1}/√(x^2+y^2),分子を有理化して、  lim {2-(x^2+y^2)}/{√(x^2+y^2)(√(1-(x^2+y^2))+1)},全体を√(x^2+y^2)で除して  iim {(2-(x^2+y^2))/√(x^2+y^2)}/)(√(1-(x^2+y^2))+1) lim[(x,y)→(0,0)] {(2-(x^2+y^2))/√(x^2+y^2)}/)(√(1-(x^2+y^2))+1)=0/2=0 以上より全微分可能と言える。 という解釈でよろしいでしょうか? お手数をかけます。

質問者が選んだベストアンサー

  • ベストアンサー
noname#118938
noname#118938
回答No.1

 lim {√(1-(x^2+y^2))-1}/√(x^2+y^2)分子を有理化して、  lim {2-(x^2+y^2)}/{√(x^2+y^2)(√(1-(x^2+y^2))+1)} ↓ ↓ ↓ ↓ lim -(x^2+y^2)/{√(x^2+y^2)(√(1-(x^2+y^2))+1)} が〇    (x,y)→(0,0)とすると lim -(x^2+y^2)/{√(x^2+y^2)(√(1-(x^2+y^2))+1)}=0/2=0 これにより全微分可能が言えた

izayoi168
質問者

お礼

書き込みにへの返信が遅れてしまい、申し訳ありません。 参考にさせていただきます。

関連するQ&A

  • 全微分可能性の問題です。(再考しました)

    回答者の皆様にはいつもお世話になります。 以下の全微分の問題ですが、全微分可能性の厳密な理解が私自身できていない気がします。 お知恵をお貸しください。 問題:f(x,y)が点(a,b)で全微分可能である事の定義を示し、それを利用してf(x,y)=√(1-x^2-y^2)の原点での微分可能性を証明せよ。 f(x,y)がxとyについて偏微分可能である。(fx,fyと表現します) f(x,y)を点(a,b)の周りで一次近似する最良の平面はf(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)であり、その誤差εはf(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}となる。 (x,y)→(a,b)の時、この誤差εがベクトル((x-a),(y-b))の絶対値√((x-a)^2+(y-b)^2)より先に0になれば微分可能なので、lim[(x,y)→(a,b)] [f(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}] / √((x-a)^2+(y-b)^2)=0がf(x,y)の点(a,b)における全微分可能の定義となる。 f(x,y)=√(1-x^2-y^2)のとき、f(0,0)=1 fx(x,y)=-2x・{1/2√(1-x^2-y^2)}より、fx(0,0)=0 fy(x,y)=-2y・{1/2√(1-x^2-y^2)}より、fy(0,0)=0 ∴ε=√(1-x^2-y^2)-1-{0・(x-0)+0・(y-0)}=√(1-x^2-y^2)-1 又ベクトル(x-0,y-0)の絶対値は√(x^2+y^2) 以上より、lim[(x,y)→(0,0)] {√(1-x^2-y^2)-1}/√(x^2+y^2)=0の時、全微分可能 極座標で考えると、(x,y)→(0,0)の時、r→0であり、x=r・cosθ,y=r・sinθ、 代入してlim[r→0] {√(1-r^2)-1}/r、分子を有理化して、 lim[r→0] -r^2/{r√(1-r^2)+1}=lim[r→0] -r/{√(1-r^2)+1}=-0/2=0 つまり全微分可能である。 というアプローチで如何でしょうか? ご指導願います。

  • 何故偏微分が法線の成分に

     関数f(x,y,z)=0という曲面があって曲面上のある点Pの接平面を求めるとき  Fx*X'+Fy*Y'+Fz*Z=0という式が出ます。 この式の意味するところはFx Fy FzがP点での法線ベクトルのx y z成分になるということらしいのですがよく理解出来ません。何故偏微分が法線ベクトルの成分になるのでしょうか?教えてください!

  • 全微分

    はじめまして。意味不明な質問だと思われますがお願いします。 曲面Z=f(x,y)は、点(a,b)の近くでは平面で全微分可能であるとき f(a+h,b+k)=fx(a,b)(x-a)+fy(a,b)(y-b)+ε1となる。 この式の意味がよく分からないのですが 右辺の接平面の方程式がでてくることがよくわかりません。 どなたか、よろしくお願いします

  • 全微分を理解する際の質問です。

    全微分は関数z=f ( x , y )に対して dz=fx ( x , y ) dx- fy ( x , y ) dy と表しますが、これをz=f ( x , y )の増分 Δz=f ( x+Δx , y+Δy ) - f ( x ,y ) から導く際の導出について質問です。 このとき、平均値の定理から f ( x+Δx , y+Δy ) - f ( x ,y )=fx ( x+θΔx , y ) Δx- fy ( x , y+φΔy )Δy (ただし、θとφは0<θ<1 , 0<φ<1とする) ここで、Δx→0 , Δy→0すると fx ( x+θΔx , y )=fx ( x , y ) + ε(Δx) , fy ( x , y+φΔy )+ε(Δy) (εは誤差.。カッコの中身は区別のために付けました) なので Δz=fx ( x , y ) Δx- fy ( x , y )Δy +ε( Δx ,Δy ) (ε( Δx ,Δy )=ε(Δx)Δx + ε(Δy)Δyとした) ここで、dzをΔzの近似と考えると Δz=dz + ε( Δx ,Δy ) と表せる。このとき lim[(Δx , Δy)→(0,0)] ε( Δx ,Δy )/√(Δx^2+Δy^2)=0 となっていればよい。 こんな感じのことが書いてあったのですが、どこから √(Δx^2+Δy^2) が出てきて lim[(Δx , Δy)→(0,0)] ε( Δx ,Δy )/√(Δx^2+Δy^2)=0 となれば全微分可能なのでしょうか。 よろしくお願いします。 追伸 先ほど、間違った内容で質問をしました。そちらは自分で間違った認識をして回答者様にもご迷惑をおかけしました。申し訳ありません。また今回も間違ってる可能性がありますので、その際はご指摘いただけると幸いです。よろしくお願いします。

  • 偏微分と全微分

    偏微分、全微分の問題です 解き方を教えてくださいm(_ _)m f(x,y)=x^2sin(1/x) (x≠0)、0(x=0) (1)fx(0.y)、fy(0.y)を求めよ。 (2)fx(x.y)はどこで全微分可能か、またそこで全微分せよ。 よろしくお願いします。

  • 本当に困っています…orz(全微分)

    全微分可能の定義の説明をしなさいという課題なのですが、過去2回提出したものの、理解不十分と評価されました。どの部分かの指摘が無いので、先に進めません。 まことに申し訳ありませんが、以下の考え方の間違っているところ等、ご指摘ください。 宜しくお願いします。 >>関数f(x,y)の点(a,b)における全微分可能を説明します。 関数f(x,y)の定義域内で点(a,b)が点(a+Δx,b+Δy)へ移動したとき、変化量はA、BをΔx,Δyと無関係な定数として、 lim[(Δx,Δy)→0] ε=0 の条件のもと、 f(a+Δx,b+Δy)-f(a,b)=AΔx+BΔy+ε√(Δx^2+Δy^2) Δy=0の時、f(a+Δx,b)-f(a,b)=AΔx+ε|Δx|より A={f(a+Δx,b)-f(a,b)}/Δx-{ε|Δx|}/Δx Δx→0を考えると、lim[(Δx,Δy)→0] ε=0より A=lim[Δx→0] {f(a+Δx,b)-f(a,b)}/Δx=fx(a,b)…xの偏微分 同様にΔx=0の時、Δy→0を考えると、 B=lim[Δy→0] {f(a,b+Δy)-f(a,b)}/Δy=fy(a,b)…yの偏微分 以上より、変化量は Δf=fx(a,b)Δx+fy(a,b)Δy+ε√(Δx^2+Δy^2) かつlim[(Δx,Δy)→0] ε=0 で表される。この時、関数f(x,y)は点(a,b)において全微分可能である//

  • 以前も質問しましたが解決できませんでした。微分の問題です。

    f(x,y)=(xy)(x^2-y^2)/x^2+y^2 (x,y)≠(0,0) =0 (x,y)=(0,0)について 1.fが平面全体で連続であることを証明してください。 2.fx(x,y),fy(x,y) (x,y)≠(0,0)とfx(0,0),fy(0,0)を求めてください 3.fxy(0,0)とfyx(0,0)を求めてください 4.fが全微分可能である理由と、fがC2級である理由を教えてください

  • 偏微分係数の問題

    次の関数の(0,0)における偏微分係数を、定義に従って求めよ f(x,y)=(x^3-y^3)/(x^2 +y^2) ((x,y)≠(0,0)のとき) 0((x,y)=(0,0)のとき) ↑少し見づらいかもしれませんがご了承下さい 以上の問題で他の問題と比較しながら解いたところ、fx(0,0)は解答通り1になったのですがfy(0,0)が-1になりませんでした ちなみに、自分はyについて偏微分してから x=rcosθ、y=rsinθ を代入して求めました 解き方が分かる方簡単にでいいので解答をお願いします(>_<)

  • 全微分可能条件における誤差の極限について

    全微分可能である条件 f ( x+Δx , y+Δy ) - f ( x ,y )=fx ( x , y ) - fy ( x , y ) +ε( Δx ,Δy ) lim[(Δx , Δy)→(0,0)] ε( Δx ,Δy )/√(Δx^2+Δy^2)=0 となっていますが、どこから √(Δx^2+Δy^2) が出てきて lim[(Δx , Δy)→(0,0)] ε( Δx ,Δy )/√(Δx^2+Δy^2)=0 となるのでしょうか。 よろしくお願いします。

  • 接平面を求める際の全微分可能の定義

    曲面z=f(x,y)は、曲面上の点A(x1, y1,z1)において偏微分可能とすると、点Aを通り方向ベクトルd1=(1,0, f_x(x1,y1)), ベクトルd2=(0,1,f_y(x1, y1))をもつ平面αの式はα: z-z1=f_x(x1,y1)*(x-x1)+f_y(x1,y1)*(y-y1)と表す事ができる。 ※このf_x(x1,y1), f_y(x1,y1) は点Aにおける偏微分係数の事です。 すみませんグラフを載せる事ができないので分かりにくいと思いますが、xy平面上の点Bo:(x1+Δx, y1+Δy, 0), 点Bの真上、点Aと同じ高さにある点B:(x1+Δx, y1+Δy, z1), 点Bの真上、平面α上にある点C:(x1+Δx, y1+Δy, z2), そして点Cの真上、曲面z=f(x,y)上にある点D(x1+Δx, y1+Δy, z3)をそれぞれとります。 ここでz1=f(x1, y1) z2= z1+f_x(x1,y1)*(x1+Δx-x1)+f_y(x1,y1)*(y1+Δy-y1)=z1+f_x(x1+y1)*Δx+f_y(x1,y1)*Δy z3=f(x1+Δx, y1+Δy) BD=z3-z1=Δz, CD=ε(x1, y1)とおくと、BD=BC+CD=(z2-z1)-z1=f_x(x1,y1)*Δx+f_y(x1, y1)*Δy+ε(x1, y1)となる。 ここでε(x1, y1)は点Boにおいて曲面z=f(x,y)を平面αで近似するときに生じる誤差のことである。ここで(Δx, Δy)→(0,0)としたときに ε(x1,y1)/√(Δx)^2+(Δy)^2→0となれば、全微分可能だといえる。 質問ですが、まず『ε(x1,y1)は、点Bo(x1+Δx, y1+Δy)において曲面z=f(x,y)を平面αで近似するときに生じる誤差』とありますが、点Boで近似するとはどういう事ですか?? また、誤差ε(x1, y1)のx1, y1はどこからきたのでしょうか?点Aの座標ですか? 次に、『ε(x1, y1)/√(Δx)^2+(Δy)^2→0ならば全微分可能』というところで、これを言い換えると√(Δx)^2+(Δy)^2すなわちABより先にε(x1,y1)が0に近づけばよいとあります。これはもし先に誤差ε(x1,y1)がだんだん小さくなると、曲線ADが三角形ABCの辺AC(これは平面α上にある)に近づくということでしょうか? では仮にABがε(x1,y1)より先に0に近づく場合、ABがほぼ0になった時点でε(x1,y1)はまだほぼ0になっていないので、自分の推測ですが結局平面αが少し上に剥がれたような形になり、曲面z=f(x,y)は、点Aで平面αに近づくとは言えないので、全微分可能ではないという事でしょうか?