• ベストアンサー

ガウス記号の問題の解き方が分かりません

さっそくですが、質問させていただきます。 [x]+[x+1/3]+[x+2/3]=[3x]を示せ という問題ですが、 参考書によると、実数xの整数部分を[x]とおくとき、上の式が成り立つことを示すには、xの整数部分をn、少数部分をα(0≦α<1)とおいて、x=n+αとし、 また、左辺の第2、3項の形から ⅰ)0≦α<1/3 ⅱ)1/3≦α<2/3 ⅲ)2/3≦α<1 で場合分けして、調べなければならい、と あります。 どうして、上の場合分けが必要なのか、理解が出来ないのです。 お分かりの方、どうかどうか教えて戴けないでしょうか。 よろしく、お願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

x「自身」の整数・小数部分と x+1/3、x+2/3の整数・小数部分とが違ってくることに注意しないといけません。 i)0≦α<1/3 αが1/3よりも小さければ、1/3+α<1、2/3+α<1であることがわかります。 つまり、x+1/3、x+2/3の整数部分は、xと同じ [x]になります。 ii)1/3≦α<2/3 1/3+α<1ですが、1≦2/3+αとなります。 xと x+1/3の整数部分は同じですが、 x+2/3の整数部分は [x+1]となり、小数部分は 2/3+α-1= α-1/3となります。 iii)2/3≦α<1 1/3+α、2/3+αともに、1以上になってしまいます。 あとは、ii)と同様です。 数直線上で点をとってみると、よりわかりやすいかと思います。

ma-cyan369
質問者

お礼

有難う御座いました。 数直線上およびグラフで考えたところ、スッキリしました。 私の過去の疑問は、場合わけのパターンで、 例えば、ⅰ)0≦α<1/2とⅱ)1/2≦α<1とかで、場合分けがなぜ出来ないというものでした。 ⅰ)場合ですと、0≦α<1/3と1/3≦α<1/2で右辺の値が違ってくることが当然で、荒唐無稽な場合分けです。

その他の回答 (1)

  • HANANOKEIJ
  • ベストアンサー率32% (578/1805)
回答No.2

場合わけをして、3回示すとおしまいです。やってみるとわかります。やらないとわからないです。 [x]+[x+1/2]=[2x] この等式を示せ。[早稲田大学] を最初に解いてみてください。

ma-cyan369
質問者

お礼

たしかに、冷静にやってみて分かりました。 有難う御座いました。

関連するQ&A

  • ガウス記号

    実数xに対して、その整数部分を〔x〕で表す。すなわち〔x〕は不等式 〔x〕≦x<〔x〕+1をみたす整数である。実数xに対して、等式 〔x〕+〔x+1/3〕+〔x+2/3〕=〔3x〕が成り立つことを示す。 まず 0≦α<1/3 1/3≦α<2/3 2/3≦α<1の場合わけがわかりません。 表し方が 小数部分をαとおく 0≦α<1/3のとき 〔3x〕=〔x〕+〔x+1/3〕+〔x+2/3〕 =〔n+α〕+〔n+α+1/3〕+〔n+α+2/3〕の式がわからないです。 nとαがわからない。(どこから現れたか) 〔n+α〕のαが1より小はなぜわかるの? 〔n+α+1/3〕のα+1/3が1より小はなぜわかるのか? 〔n+α+2/3〕のα+2/3がなぜ1より小はなぜわかるのか? 〔n+α〕+〔n+α+1/3〕+〔n+α+2/3〕を計算すると なぜ3nなのか? 右辺=〔3x〕=〔3n+3α〕になるのか? 3αはなぜ1より小く、どこから現れてきたのでしょうか?

  • ガウス記号を用いた問題

    以下の問題を解いています 「実数xに対して、その整数部分を[x]であらわす。 すなわち[x]は不等式 [x]≦x<[x]+1 を満たす整数である。 (1)実数xに対して、等式   [x]+[x+1/3]+[x+2/3]=[3x] を示せ。 (2)正の整数n、実数xに対して、等式   [x]+[x+1/n]+[x+2/n]+・・・+[x+(n-1)/n]=[nx]を示せ。」 (1)でxに数字を入れたところ確かに成り立つのですがどのように「示す」のかがわかりません。 (2)では何かを置くとは思うのですが、ガウス記号を学校で詳しくやらなかったためわかりません。 回答していただけると助かります。 ぜひよろしくおねがいします

  • ガウス記号

    実数Xを超えない最大の整数を記号で[X]はだいたい理解できます。 正の時は切り捨て。 負の時は切り上げ。 ①[X]=nとすると n≦X<n+1は、最大の整数nと大きくてもn+1未満の間に実数Xがある…っていう、[X]のXの範囲を表す不等式って意味ですか? ②X-1<[X]≦X って何ですか? 実数X-1とXの間の[X]つまり最大の整数はXか、またはX-1とXに挟まれた中の整数ってことでいいですか? X-1を含まないのは、最大でなくなるから… 要するに、最大の整数を見つける為のnの位置の範囲みたいな感じで、とらえてもいいですか? 長々とすいません。①②について自分なりに説明してみたんですが、自信ありません。かなり初歩かもしれませんが、出来れば、易しく解説していただけたらうれしいです。お願いします。

  • ガウス記号・数列

    a_n=[n/2]-[n/4],b_n=[n/3]-[n/6],c_n=a_n+1-b_n+2 ;[]はガウス記号,_は数列を表します。 ここで、実数xに対して、[x]はxを超えない最大の整数を表す。 すなわち[x]はm≦x≦m+1となる整数mである。 a_5=1,a_10=3,b_5=1,b_10=2,c_5=1,c_10=1 である。 (1)すべてのnに対して a_n+r=a_n+1,b_n+s=b_n+1,c_n+t=c_n+1 が成り立つ整数r,s,tを求めよ。 (2)a_n≧10となる最小のn、b_n≧10となる最小のn、c_n≧10となる最小のnを求めよ。 (3)Σ_[k=1,n]a(k)≧100となる最小のn、Σ_[k=1,n]b(k)≧100となる最小のnを求めよ。 どの様なアプローチの仕方をしていいのか分かりませんでした。 解説を宜しくお願い致します。

  • 数Iのガウス記号について

    問題集の問題で、解答の場合分けが分かりません… Q:実数xを超えない最大の整数を記号[x]で表す時、次の関数のグラフを-1≦x≦2の範囲で描け (1)f(x)=x-[x] (2)g(x)=[-x] 解答 (1) ・-1≦x<0のとき[x]=-1 ・0≦x<1のとき[x]=0 ・1≦x<2のとき[x]=1 ・x=2のとき[x]=2 より f(x)=x+1(-1≦x<0) x(0≦x<1) x-1(1≦x<2) 0(x=2) (2) ・x=-1のとき-x=1ゆえ[-x]=1 ・-1<x≦0のとき0≦-x<1ゆえ[-x]=0 ・0<x≦1のとき-1≦-x<0ゆえ[-x]=-1 ・1<x≦2のとき-2≦-x<-1ゆえ[-x]=-2 (1)は[x]=n←→n≦x<n+1っていうのを見てなんとなーく(?)わかった気がするんですけど… (2)はなんとなくも分からなくて… [-3.4]=-4とかそういうことはわかるんですが… (1)は-1≦x<0から始まるのに(2)はx=-1から場合分けが始まるのがわかりません どなたかわかりやすく解説お願いします…

  • ガウス記号

    ガウス記号を使って[X]と表現された数は、積分やシグマなどで使いにくくて困っています。[X]は、実数Xを超えない最大の整数であるという定義(条件)が、式に含まれてないので、使いにくいと思います。そこで、この条件を式に組み込んで、[X]=?という式にできればと考えています。どなたか、わかる方お願いします。

  • ガウス記号の基本的な性質について。

    とても基本的なことで恐縮です・・・ ガウス記号についてなのですが、 ↓参考書より: [x]は、次のような性質を持っています。 [x]=n(n:整数)のとき、n≦x<n+1 この不等式から、nを消去すれば、 [x]≦x<[x]+1 あるいは x-1<[x]≦x となります。 と、あるのですが。[x]≦x<[x]+1は、n≦x<n+1に[x]=nを代入しただけですよね、ですが、x-1<[x]≦xはどうやって、計算されたのでしょうか・・・? x-1<[x]≦xの意味は理解できるのですが、どうやって導かれたのか分からないです。 基本的な不等式の関係なのでしょうけれど、何度考えても分からず本屋さんで参考書を何柵かめくっても、ガウス記号について書かれている本がなく困りました・・・。

  • 高校数学、判別式の問題

    nを整数としてP(x)=x(x-1)(x-2)-n(n-1)(n-2)を考える まず(1) P(x)をx-nで割ったときの商と余りを求めよ という問題で商x^2+(n-3)x+(n-1)(n-2) 余り0 次に(2) 方程式P(x)=0の解がすべて実数となるとき、整数nの値をすべて求めよ。(この問題が分かりません) 答えには(1)よりP(x)=(x-n){x^2+(n-3)x+(n-1)(n-2)} P(x)のときx-n=0とすると、nは整数であるからP(x)=0は実数解を持つ、よってP(x)=0の解がすべて実数であるとき、x^2+(n-3)x+(n-1)(n-2)=0の判別式をDとして、D≧0であればよい。 と、なっていましたが "nは整数であるからP(x)=0は実数解を持つ"という部分がよくわかりません よろしくお願いします。

  • 連立漸化式から数列の一般項をもとめる問題です

    aは実数とする。x1=y1=2のとき x[n+1]=x[n]+ay[n]・・・・・・・・(1) y[n+1]=2x[n]+2ay[n]-2・・・・(2)     (n=1,2,・・・) から数列{x[n]}、{y[n]}の一般項を求めよ。 この問題で(2)へ(1)を代入し、x1=y1=1よりy[n]=2x[n]-2 (n=1,2,・・・)と分かりました。 この式を(1)へ代入して   x[n+1]=x[n]+a( 2x[n]-2 ) =( 2a+1 )x[n] - 2a(n=1,2,・・・)・・・・・* よって   x[n+2]=(2a+1)x[n+1] - 2a (n=1,2,・・・) -) x[n+1]=( 2a+1 )x[n] - 2a (n=1,2,・・・) --------------------------------------------------------   x[n+2]-x[n+1]=( 2a+1 )(x[n+1]-x[n]) (n=1,2,・・・) が得られました。すると2a+1=0のとき等比数列にならないので場合分けがいると思いましたが 参考書の解説には場合分けがありませんでした。これはどういうわけなのでしょうか?

  • 等式証明(シグマ記号入り)

    (1)nを自然数とするとき、次の等式が成り立つことを示せ x Σ[k=1,n]k(1+x)^(k-1)+Σ[k=1,n+1](1+x)^(k-1)=(n+1)(1+x)^n この問題なのですが、左辺を計算しても右辺に持っていくことができませんでした。(1+x)^(k-1)というのが左辺の2つの項にあるのですがΣがあるので因数分解もできなく困っています。この共通している部分を生かせるのでしょうか? それとも左辺を計算させて右辺に一致させるのではなく数学的帰納法を使うのでしょうか? 回答宜しくお願いします