• ベストアンサー

等式証明(シグマ記号入り)

(1)nを自然数とするとき、次の等式が成り立つことを示せ x Σ[k=1,n]k(1+x)^(k-1)+Σ[k=1,n+1](1+x)^(k-1)=(n+1)(1+x)^n この問題なのですが、左辺を計算しても右辺に持っていくことができませんでした。(1+x)^(k-1)というのが左辺の2つの項にあるのですがΣがあるので因数分解もできなく困っています。この共通している部分を生かせるのでしょうか? それとも左辺を計算させて右辺に一致させるのではなく数学的帰納法を使うのでしょうか? 回答宜しくお願いします

  • DccD
  • お礼率20% (13/64)

質問者が選んだベストアンサー

  • ベストアンサー
  • leige
  • ベストアンサー率45% (11/24)
回答No.1

式を変形してやるなら xΣ[k=1,n]k(1+x)^(k-1)の部分を (1+x)Σ[k=1,n]k(1+x)^(k-1)-Σ[k=1,n]k(1+x)^(k-1) と分けて整理していくとうまくいくと思います。 上の式にした後は(x+1)の次数が前と後ろの項で違うので それをそろえてみてください。

その他の回答 (2)

回答No.3

数学的帰納法を使わなくても出きる方法を紹介します。この場合は簡単になります。 表現の簡単化のためr=1+x Sn=Σ[k=1,n]k(1+x)^(k-1) = Σ[k=1,n]kr^(k-1) Rn=Σ[k=1,n](1+x)^(k-1) = Σ[k=1,n]r^(k-1) とおきます。 すると(1-r)Sn=Rn-nr^n となります。・・・・(1) これは等比級数Rnの和を求める方法と同じでΣの中を1つづらして計算しても、Snと-rSnの列を1つずらせて計算しても両端以外の各項は kr^(k-1) - (k-1)r^(k-1)=r^(k-1) となることから判ります。 問題の式は (r-1)Sn+R(n+1)=(n+1)r^n を証明することですが(1)式をこの左辺に代入すればSn,Rnを求めることなく簡単に解けます。

  • oyaoya65
  • ベストアンサー率48% (846/1728)
回答No.2

>それとも左辺を計算させて右辺に一致させるのではなく数学的帰納法を使うのでしょうか? 数学的帰納法でやってみたところ 上手く行きました。 この方法でも上手く行くことをお知らせしておきます。

関連するQ&A

  • 不等式の証明

    n を2 以上の自然数とするとき、次の不等式を証明せよ。 ( 1 / 1^2 ) + ( 1 / 2^2 ) + ( 1 / 3^2 ) + ・・・・ + ( 1 / n^2 ) < 2 - ( 1 / n ) ( I ) n = 2 のとき ( 左辺 ) = ( 1 / 1^2 ) + ( 1 / 2^2 ) = 1 + ( 1 / 4 ) = 5 / 4 ( 右辺 ) = 2 - ( 1 / 2 ) = 3 / 2 = 6 / 4 ∴ ( 左辺 ) < ( 右辺 ) ( II ) n = k ( k ≧ 2 ) のとき成立を仮定 ( 1 / 1^2 ) + ( 1 / 2^2 ) + ・・・・ + ( 1 / k^2 ) < 2 - ( 1 / k ) 両辺に 1 / ( k + 1 )^2 を加えて ( 1 / 1^2 ) + ( 1 / 2^2 ) + ・・・・ + ( 1 / k^2 )+ { 1 / ( k + 1 )^2 } < 2 - ( 1 / k ) + 1 / ( k + 1 )^2 この後どうやって証明するかわかりません。教えてください、お願いします。

  • 数学的帰納法の必要性について

    数学的帰納法の例題として、「1+3+5+…+(2n-1)=n^2の等式を証明せよ」というものが教科書に載っています。 この例題は左辺をΣ(2k-1)としてk=1からnまでの和で計算して、右辺を導くという方法では証明できないのでしょうか? つまり、この例題においては数学的帰納法を使う必要性がないのではと考えております。 もし、上記認識が正しければ数学的帰納法でないと証明できないような例題はありますでしょうか? よろしくお願いします。

  • 「e」が絡んだ不等式証明

    「自然数nについて、次の不等式が成り立つことを求めよ。    n・log(n)-n+1 ≦ log(n!) ≦ (n+1)log(n+1)-n  」 という問題で、最初は素直に左辺-右辺≧0を使って示しました。 その後、別解として数学的帰納法を用いた証明に挑みました。 n=1のときは楽勝ですが、n=kで成り立つことを仮定した後の「n=k+1」のときに、式変形でつまずきました。今回の質問は、その最後の大小関係の評価についてです。(以下、式はn=k+1のときのもの) log{(k+1)!}-(k+1)log(k+1)+(k+1)-1 =log(k+1)+log(k!)-(k+1)log(k+1)+k ≧k・logk-k+1-k・log(k+1)+k =1-log(1+1/k)^k ・・・・・・・・・・・・(1) (1)をみた時、「あ、これってeの定義式に似てるな」と思い、もしかして (1)≧1-log(e)=0 ・・・・・・・・・・・・・(2) でも言えるのかと思ったのですが、 疑問I: だからといって果たして(2)で等号が言えるのか? 疑問II:そもそも、lim[x→∞](1+1/x)^x=e は、eより大きい数からeに近付くのか?eより小さい数からeに近付くのか?そしてlim[x→-∞](1+1/x)^x=e では? 上の疑問について、答が出せる方、宜しくお願いします。

  • 不等式の証明! 高二

    不等式n/2<1+1/2+1/3+……+1/2^n -1≦n^2 を証明せよ。 数学的帰納法でやるのかなーとは思います。 n=1の時は成り立つのは分かりました。 n=kが成り立つと仮定したときn=k+1のときに成り立つことの証明が出来ません^^; どなたか分かる方教えて下さい!

  • 数学的帰納法

    nが自然数のとき、次の等式(*)を数学的帰納法を用いて証明せよ。 2+4+6+…+2n=n(n+1)・・・(*) 今日、数学的帰納法を勉強すていて自分で回答をつくったのですが、これでいいのか見てもらえませんか? 2+4+6+…+2n=n(n+1) (1)n=1のとき、左辺2、右辺2、よって成り立つ (2)n=kのとき 2+4+6+…2k=k(k+1)・・・1 が成り立つと仮定すると n=k+1 2+4+6+…2k+2(k+1)=(k+1)(k+2)・・・2 が成り立つことを証明する 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1)・・・3 2と3の右辺が一致するので、(*)は成り立つ (1)(2)より、すべてな自然数は成り立つ ・・・3のところを 2+4+6+…2k+2(k+1)=k(k+1)+2(k+1) =(k+1)(k+2) =kの2乗+3k+2 よって成り立つ こうしてもよいのでしょうか 自分でつくったためあっているかわかりません 教えてください。

  • 数学的帰納法の等式の証明

    数学的帰納法の等式の証明がわかりません。 良くわからないのでわかる方がいましたら説明をお願いします。 1二乗+2二乗+3二乗...n二乗=1/6n(n+1)(2n+1)・・・(1) n=1のとき(1)は 左辺=1、右辺1/6*1*2*3=1 よって(1)はn=1もとき成り立つ。 (1)がn=kのと成り立つと仮定すると、 1二乗+2二乗+3二乗+...k二乗=1/6k(k+1)(2k+1)と示せばよい。 n=k+1のとき 1二乗+2二乗+3二乗+...k二乗=1/6k(k+1)(k+2) 左辺=1二乗+2二乗+3二乗+...k二乗+(k+1)二乗 =1/6k(k+1)(k+2)+(k+1)二乗 =1/6(k+1)(k(2k+1)+6(k+1)) =1/6(k+1)(2k二乗+7k+6) =1/6(k+1)(k+2)(2k+3) =1/6(k+1)((K+1)+1)(2(k+1)+1) よってn=k+1のとき(1)は成り立つ。 全ての自然数nについて(1)は成り立つ。 という問題なんですが・・・。 1二乗+2二乗+3二乗+...k二乗+(k+1)二乗の (k+1)二乗はどこから出てきたんですか? どうしてもこれが何処から出てきたのかわかりません。 よろしくお願いします。

  • 数学的帰納法 不等式の証明

    数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

  • 不等式の証明

    FKG不等式に関連する次の不等式の問題: 数列{a_n},{b_n}を単調増大列とするとき、 (a_1b_1+a_2b_2+…+a_nb_n)/n≧{(a_1+a_2+…+a_n)/n}{(b_1+b_2+…+b_n)/n} を示せ。 を解きたいのですが、Abel変形(積分の部分積分に相当するテクニック)を使えば簡単に証明できるのは知っています。で、この不等式、数学的帰納法では解けないのか?ということが少し気になりました。 n=1なら自明で、n=kで成立すれば、n=2kで正しい、ということは容易に分かります。したがってn=2^mタイプの自然数に対しての成立は簡単ですが、任意のnについて成り立つことを帰納法でうまく示すことは出来ますか?何かアイデアがあればぜひ教えてください。n=k(≧2)で成り立てば、n=k-1でも成り立つ、みたいなことが言えるとよいのですが。

  • 証明の問題 パート2

    1+1/2^2+1/3^2・・・+1/n^2≦2-(1/n) (nは自然数) 数学的帰納法を用いて証明せよ。 途中まで考えてみました。 〔1〕n=1の時    左辺は1 右辺も1 よって成立 〔2〕n=kの時    1+1/2^2+1/3^2・・+1/k^2≦2-(1/k)で成立するとする。 ここからn=k+1の場合を考えればいいんですよね。なんだか混乱して分からなくなりました。簡単かもしれませんが、教えてください。

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。