• ベストアンサー

重積分

∫【0→1】{∫【0→y】1/√(x^2+y^2)dx}dy の値は -1+(1/2)*log2 で合っているでしょうか?自信がないので質問します。中の積分 ∫【0→y】1/√(x^2+y^2)dxの値はlog((√2)y)となりました。

質問者が選んだベストアンサー

  • ベストアンサー
  • Mr_Holland
  • ベストアンサー率56% (890/1576)
回答No.3

 xによる積分は、x=ytanθ と変数変換を行うと計算しやすいと思います。  x=ytanθ ∴dx=ydθ/(cosθ)^2  x=0のとき θ=0  x=yのとき θ=π/4  ∫【0→1】{∫【0→y】1/√(x^2+y^2)dx}dy =∫【0→1】dy ∫【0→π/4】dθ/(cosθ)^2/√{1+(tanθ)^2} =∫【0→1】dy ∫【0→π/4】dθ/cosθ =1 × log(√2+1) =log(√2+1)

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

そのまま反復積分しても良いが、 極座標へ変数変換すると楽しい。 (x, y) = (r cosθ, r sinθ) で置換すると、 面素 dx dy は r dr dθ に、 積分域 0≦y≦1, 0≦x≦y は π/4≦θ≦π/2, 0≦r≦1/sinθ に変換される。 よって、問題の積分は =∫[π/4≦θ≦π/2] dθ/sinθ。 更に、c = cosθ で置換すれば、 =∫[0≦c≦1/√2] dc/(1-c~2)。 これを、部分分数分解して積分すれば、結局 (1/2) log{ (1+c)/(1-c) }に c = 1/√2 を 代入したものが答えと判る。 …楽しんで戴けましたか?

全文を見る
すると、全ての回答が全文表示されます。
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

> ∫【0→y】1/√(x^2+y^2)dxの値はlog((√2)y)となりました。 間違いかと思います。 y>0という条件の下で ∫【0→y】1/√(x^2+y^2)dx=ln(1+√2)=arcsinh(1) となります。 >∫【0→1】{∫【0→y】1/√(x^2+y^2)dx}dy=-1+(1/2)*log2 間違いかと思います。 ∫【0→1】∫【0→y】1/√(x^2+y^2)dx}dy=ln(1+√2)=arcsinh(1) となります。

milkyway60
質問者

お礼

どうもありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 2重積分∫(0→1)∫(2→3)log(x + y)dxdy

    2重積分∫(0→1)∫(2→3)log(x + y)dxdyについてです。 計算し答えは合っていたのですが、自分の回答に自信がなく質問させていただきました。 ∫(0→1)∫(2→3)log(x + y)dxdy =∫(0→1){[(x + y)log(x + y)](2→3)-∫(2→3)(x + y)/(x + y)dx}dy という形にしたのですが、問題ないでしょうか?

  • 2重積分

    2重積分の質問です。 2重積分の計算で D={(x,y)|a≦x≦b,ψ1(x)≦y≦ψ2(x)}のとき ∬f(x,y)dxdy=∫[a→b]{∫[ψ1(x)→ψ2(x)] f(x,y)dy}dxですが ∬f(x,y)dxdy=∫[ψ1(x)→ψ2(x)]{∫[a→b]f(x,y)dx}dyでも可能でしょうか?? よろしくお願いします。

  • 広義重積分の問題が解けません

    Arctan(x/y)を第1象限の四半球(半径a)上(集合Kとする)において積分したいのですが、答えまでたどり着きません。 分かる方、教えてください。 以下、途中まで計算してみたところです。 間違ったところがあればあわせて教えていただければ幸いです。 広義積分と考えて解く。 Arctan(x/y)はK上正なので、Kに収束するある集合列{Km}について極限を求める。 Km={(x,y)∈R^2|x^2+y^2≦a^2,x≧1/m,y≧1/m}とする。  ∬Arctan(x/y)dxdy =∫(1/m~√(a^2-(1/m)^2))dy∫(1/m~√(a^2-y^2)) Arctan(x/y)dx dxの部分を積分すると(以下明らかな部分は区間省略)  ∫Arctan(x/y)dx =[xArctan(x/y)-(1/2)log(1+(x/y)^2)] =√(a^2-y^2)Arctan(√(a^2-y^2)/y)-(1/2)log(a^2/y^2)-(1/m)Arctan(1/(my))-(1/2)log(1+1/(my)^2) この結果を1つずつyで積分する。 (1)∫√(a^2-y^2)Arctan(√(a^2-y^2)/y)dy (2)∫-(1/2)log(a^2/y^2)dy (3)∫-(1/m)Arctan(1/(my))dy (4)∫-(1/2)log(1+1/(my)^2)dy (2)=-∫log(a/y)dy  =∫(logy-loga)dy  =[ylogy-y-yloga]  =略 (3)=-(1/m)∫Arctan(1/(my))dy  =-(1/m)∫(π/2-Arctan(my))dy  =[-(π/2m)y+myArctan(my)-(1/2m)log(1+(my)^2)]  =略 (1)と(4)はまったく分かりません。

  • 二重積分の解法

    次の問題の解き方に悩んでいます。 ∫∫ (x^2 + y^2) dxdy (ただし、 x^2 + y^2 ≦ 1) この式を自分なりに下記のように解いてみました。 dyは-(1-x^2)^1/2 ~ (1-x^2)^1/2、dxは-1~1の積分範囲としました。 ∫ dx ∫ dy = ∫ 2(1-x^2)^1/2 dx = 2[ 1/2 ( x(1-x^2)^1/2 + arcsin x )] (ここでdxなので[ ]内の積分範囲-1~1) = π/2 - (-π/2) = π としてみました。しかし、問題集では答えがπ/2となっています(解法は載っていない)。 上の解法のどこ(積分範囲?)が誤っているのでしょうか?

  • 二重積分について。

    x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。

  • 二重積分

    すいません。 先ほど質問した内容の発展の為、連続で質問となってしまいました。 下記の二重積分を解く問題です。 ∬1/(1+x^2)^2dxdy {D:y/2≦x≦1 0≦y≦2} を解くのには、 ∫[0→1]{∫[y/2→1]1/(1+x^2)^2dx}dy と考えると S(y)=∫[y/2→1]1/(1+x^2)^2dx =[y/2→1][(1/2)(tan^{-1} x +x/{1 +x^2})] V=∫[0→1]S(y)dy を計算すれば良いのでしょうか? しかし、S(y)の答えがものすごいことになってしまい・・・。 申し訳ございませんが教えて下さい。 よろしくお願い致します。

  • 2重積分の問題教えてください!

    Dを()内の不等式で表される領域とするとき、次の2重積分の値を求めよ。(領域Dも図示せよ。) ∫∫[ ,D]sin(2x+y)dxdy (0≦x≦π/2, x≦y≦2x) 2重積分の問題なのですがなかなか答えにたどり着けずにいます。誰か教えていただけないでしょうか? ∫∫[ ,D]sin(2x+y)dxdy =∫[π/2,0]{∫[2x,x]sin(2x+y)dy}dx ここからが進みません。宜しくお願いいたします。

  • 積分順序の交換(2重積分)

    累次積分はすべてにおいて、積分順序の交換は可能なのでしょうか?? 可能でないと思いますが・・・。 例えば、    ∫[1→2]{∫[x→(1/2)x] x/y dy}dx このような累次積分であれば不可能だと思いまして・・・。 累次積分において積分順序の交換ができるできないの見分け方はなんでしょうか?? 初歩的な質問ですみません。 よろしくお願いします。  

  • 二重積分の積分範囲がわかりません

    ∮∮D xy dxdy x=<y=<-x+2 ,0=<x=<1 での積分範囲がわからず困っています 外側はdyより 0→2だとおもうのですがdxは求めれません よろしくお願いします

  • 積分について

    x・dy/dx+y+y^2/xを 変数分離形になおせという問題ですが、 du/2u+u^2=-dx/xとなるのはわかりました。 次にする積分ですが右辺の-dx/xは-log|x|になるのは分かるんですが 左辺が1/2(log|u|-log|u+2|)になるのが分かりません。 さらにlog|x^2u(u+2)|=2C になる過程が分かりません。 よろしくお願いいたします。