• 締切済み

微積の問題

y=sinxcos2xのn次導関数を求めよ と f(x)=cosx(-π/2≦x≦π/2)にRolleの定理を適用せよ この2つをお願いします

みんなの回答

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

サイトの投稿基本マナー 「ご自身である程度問題解決に取り組まれた上での疑問点や問題点、お困りの点を明確にしてご投稿いただきたい」 問題だけを投稿する問題の丸投げ投稿はマナー違反になります。 あなたが取り組んだ自力解答の詳細を書いた上で、その中の行き詰っていることに絞って質問して下さい。 丸解答は削除対象なのでヒントだけ) 前半 積和公式で和に直してから2回微分するとよい。 後半 ロルの定理を書いて下さい。 yがロルの定理の適用条件が満たされていることと y'(0)=0 を示すだけでよい。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微積の問題です。

    以下のような問題に頭を悩ませております。 ふたつの関数f(x),g(x)は次の(I)(II)をみたしている。 この時次のf(x),g(x)をそれぞれ求めなさい。 (I)f(x)=πcosx+∫[π→x]g(t)dt (II)g(x)=cosx+(2/π)∫[0→x]f'(t)dt []内は積分範囲 この問題の解答が、次のようになっております。 ??に挟まれた部分が私の疑問です。 (I)の両辺をxで微分して、 f'(x)=πcosx+g(x) ?何故πcosxなのか。πsinxではないのか? 上式を(II)ヘ代入して、 g(x)=cosx+(2/π)∫[0→π]{πcost+g(t)}dt ?積分範囲は何故[0→π]に変わったのか。[0→x]ではないのか? ⇔g(x)=cosx+(2/π)∫[0→π]g(t)dt (A) 上式の積分項は定数。 以下省略 (A)の積分項が0と分かり、 従って g(x)=cosx f(x)=πcosx+sinx となっております。解答に記載されている式変形が理解できません。 分かる方、お教え頂けないでしょうか。

  • 微積

    学校の過去問を解いていて、分からないところを教えていただきたくて、投稿しました。どれでも良いので回答していただけると助かります。 ★1つ目 f(x、y)=e^(x^2+y-1)+2e^(x-1)-3=0により定まるxy平面の曲線をCとする。 (i)曲線Cをy=y(x)として、点P(1、y(1))を求め、Pをとおる接線の式を求めよ。 答え:P(1,0)より接線は  y=-4x+4 分からないのは(ii)です… (ii)点Pにおける (d^2)y/dx^2を求めよ。 答え0になったのですが合ってるのか自信がなくて… ★2つ目 Z=f(x、y)とする。座標変換をαは定数として x=ucosα+vsinα y=-usinα+vcosα とする。 (i)(∂^2)z/∂u^2+(∂^2)z/∂v^2 を計算過程を示して、座標(x、y)を用いて表せ。 ★3つ目 fはc^2級でf=f(x、y)、x=u+v y=u-vとする。 (i)fxとfyをfu、fvで表せ。 答え:fx=1/2(fu-fv) fy=1/2(fu-fv) となるところまでは分かったのですが、(ii)が分かりません。 (ii)fxx-fyyをfの変数u、vに関する編導関数を用いた式で表せ。 ★4つ目 (0、0)のまわりで次の関数をテイラー展開し2次の項まで求めよ。 {√(1-2x-y)} cosx これを、もしyで一回微分したら、 1/2(1-2x-y)^(-1/2)cosx で合ってますか??

  • 数学の微積の問題です

    1.C^2級関数fx(x,y)=fy(x,y)を満たすとき、fxx(x,y)=fyy(x,y)が成り立つことを示せ 2.C^2級関数f(x,y)に対し、x=u+2v,y=2u-vとするとき  (1)∂f/∂uを∂f/∂x,∂f/∂yを用いて表せ (2)∂^2f/∂v∂uを∂^2f/∂x^2 , ∂^2f/∂x∂y , ∂^2f/∂y^2を用いて表せ これらの問題がサッパリ分かりません、どなたか分かりやすく解法教えていただけないでしょうか?

  • どうしてもわからない微積の問題

    x>0のときf(x)=e^(-1/x)で、x≦0のときf(x)=0で定義される関数f(x)はx=0無限回微分可能で、任意のnに対して、f^(n) (0)=0である理由が分かりません。誰か証明していただけませんか。急いでいるのでお早めにお願いします。

  • 微積の問題です

    2. f'(y)=0となる解をy1,y2,...,ymとすると  0<x1<y1, y1<x2<y2,...ym<xl<∞となるときが最もyの個数が多いことから  m≧l-1 2はこんな感じでいいんでしょうか? あと1,4ができなかったのでどなたか教えていただけませんか? 特に1のテイラーの定理を利用するというのがわかりません。

  • 微積の問題です

    f(s)をs>0で定義された正の実数に値をとる連続関数、g(s)をf(s)の原始関数とする。 (1)εを1以下の正数とする。Dε={(x,y,z)|ε^2≦x^2+y^2+z^2≦1}上の3重積分 ∫∫∫Dε f((x^2+y^2+z^2)^3/2)dxdydz を求めよ。 (2)D={(x,y,z)|0<x^2+y^2+z^2≦1}上の広義積分 ∫∫∫D f((x^2+y^2+z^2)^3/2)dxdydz が収束するための条件、および収束する時の積分の値を求めよ。 という問題がわかりません 解説よろしくお願いします!

  • 以下の二つの問題がどうしても解けません・・・。

    以下の二つの問題がどうしても解けません・・・。 (1)cosx^12をマクローリン級数に展開せよ。 (2)Σ(-1)^n*x^(4n-3)/(2n+1)!と展開されるxの関数を求めよ。    (シグマはn=0から∞です) (1)は(cosx^12)'=-12x^11*sinx^12 (cosx^12)"=-12*11*x^10*sinx^12-12*12*x^22*cos^12 としたところで、x=0を代入するとほとんどのものが消えるのですが、-12*12*x^22*cosx^12の部分はnを∞に持って行ったときには残ってしまいます。いろいろ試してみましたが、まったく上手くいきませんでした。 (2)はマクローリン級数のsinxやcosxなどの定理から考えてみましたが、これも解答にはたどりつけませんでした。 すみませんがどなたかよろしくお願いします。

  • 微積の問題

    次の関数をxについて微分せよ。 y=∫x→x二乗 e sint乗dt(表記が無茶苦茶でごめんなさい) という問題の答えが解説を読んでも全く分かりませんでした。 ヒントには微分積分学の基本定理と合成関数の融合問題と書かれていました。数学が苦手で困っています。詳しい解説をお願いします。

  • Lebesgue積分の問題

    lim_{n→∞}∫_{0}^{n}x^k(1-(x/n))^n dx (kは自然数,{0}^{n}は積分範囲です。) という問題で,積分範囲からnを消して,Lebesgueの収束定理を用いて解くと 考えたのですが,y=x/nと置換するとf_n(y)=n^{k+1}y^k(1-y)^nとなり, |f_n|≦φとなるφが見つけられません。ほかにもいくつか積分範囲からnが消えるように 置換してみたのですが,収束定理が使えるような関数が見つかりません。 別のやり方でやるか,上手くf_nが抑えられるように置換できるものがあるのでしょうか? どなたか解説お願いします。

  • 2変数関数のテイラーの定理の問題について

    どうにか2変数関数のテイラーの定理の問題まで解き進めることができました。 ここまでこれたのも、こちらでご指導くださった皆様のおかげと大変感謝しております。まだまだ勉強不足ですが、引き続きご鞭撻のほど、よろしくお願いしまします。 2変数関数のテイラーの定理の問題を解いてみたのですが、 これであっているのか、ご指導いただければと思います。 特に(5)が自信ないです。 【問題】 次の2変数関数に、n=2の場合の「マクローリンの定理」を適用せよ。 ※2変数関数のマクローリンの定理 f(x,y)=f(0,0) +(1/1!){x・(δ/δx)+y・(δ/δy)} f(0,0) +(1/2!){x・(δ/δx)+y・(δ/δy)}^(2) f(0,0) +… +(1/(n-1)!){x・(δ/δx)+y・(δ/δy)}^(n-1) f(0,0) +(1/n!){x・(δ/δx)+y・(δ/δy)}^(n) f(θx,θy) (0<θ<1) ※2変数関数のマクローリンの定理(n=2の場合) f(x,y)=f(0,0)+{fx(0,0)+fy(0,0)y} +(1/2){fxx(θx,θy)x^(2)+2fxy(θx,θy)xy+fyy(θx,θy)y^(2)} (1) x+y f(x,y)=x+y f(0,0)=0 fx(x,y)=1 fx(0,0)=1 fy(x,y)=1 fy(0,0)=0 fxx(x,y)=0 fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=0 fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(0x^2+2・0xy+0・y^2)=0 (2) x^2+y^2 f(x,y)=x^2+y^2 f(0,0)=0 fx(x,y)=2x fx(0,0)=0 fy(x,y)=2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=0 fxy(θx,θy)=0 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・0xy+2y^2) =(1/2)(2x^2+2y^2) =x^2+y^2 (3) x^2+2xy+y^2 f(x,y)=x^2+2xy+y^2 f(0,0)=0 fx(x,y)=2x+2y fx(0,0)=0 fy(x,y)=2x+2y fy(0,0)=0 fxx(x,y)=2 fxx(θx,θy)=2 fxy(x,y)=2 fxy(θx,θy)=2 fyy(x,y)=2 fyy(θx,θy)=2 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+0y)+(1/2)(2x^2+2・2xy+2y^2) =(1/2)(2x^2+4xy+2y^2) =x^2+2xy+y^2 =(x+y)^2 (4) x^3+y^3 f(x,y)=x^3+y^3 f(0,0)=0 fx(x,y)=3x^2 fx(0,0)=0 fy(x,y)=3y^2 fy(0,0)=0 fxx(x,y)=6x fxx(0,0)=0 fxy(x,y)=0 fxy(0,0)=0 fyy(x,y)=6y fyy(0,0)=0 2変数関数のマクローリンの定理(n=2)を適用する。 ただし、3次式のため、fxx(x,y),fxy(x,y),fyy(x,y)までの計算とする。 f(x,y)=0+(0x+0y)+(1/2)(0・x^2+2・0xy+0・y^2)=0 (5) e^(x)・sin(y) f(x,y)=e^(x)・sin(y) f(0,0)=e^(0)・sin(0)=1・0=0 fx(x,y)=e^(x)・sin(y) fx(0,0)=e^(0)・sin(0)=1・0=0 fy(x,y)=e^(x)・cos(y) fy(0,0)=e^(0)・cos(0)=1・1=1 fxx(x,y)=e^(x)・sin(y) fxx(θx,θy)=e^(θx)・sin(θy) fxy(x,y)=e^(x)・cos(y) fxy(θx,θy)=e^(θx)・cos(θy) fyy(x,y)=e^(x)・(-sin(y))=-e^(x)・sin(y) fyy(θx,θy)=-e^(θx)・sin(θy) 2変数関数のマクローリンの定理(n=2)を適用し、 f(x,y)=0+(0x+1y) +(1/2)(e^(θx)・sin(θy)・x^2+2・e^(θx)・cos(θy)・xy-e^(θx)・sin(θy)y^2) =y+(1/2)e^(θx)(sin(θy)・x^2+2cos(θy)・xy-sin(θy)y^2) =y+(1/2)θ・e^(θx)(sin(y)x^2+2cos(y)xy-sin(y)y^2) =y+(1/2)θ・e^(θx)((x^2-y^2)sin(y)x^2+2cos(y)xy) 以上、よろしくお願いしたします。