• 締切済み

数学Aの問題です。

nが3以上の整数のとき、xのn乗+2掛けるyのn乗=4掛けるzのn乗はx=y=z=0以外に存在しないことを証明せよ。 x=y=z=0でない整数x、y、zで題意の式を満たすものがあると仮定する。~~~~~~ よって、題意の式を満たす整数x、y、zは全て2の倍数である。・・・・・・(1) x=2k、y=2l、z=2m(k、l、mは整数)として題意の式に代入すると、kのn乗+2掛けるlのn乗=4掛けるmのn乗となる。 よって整数k、l、mは題意の式を満たすから、 x、y、zが題意の式を満たせばx/2、y/2、z/2も題意の式を満たす。・・・・・・・(2) 仮定より、x、y、zのうち少なくとも1つは0でない。0でない整数は全て、2のp乗かける(2q-1){p、qは整数でpは0以上}の形に表される。よってx、y、z、の0でないものの内、2の指数pの最小のものをNとすると、x/2のN乗、y/2のN乗、z/2のN乗のうち少なくともひとつは奇数となる。 ゆえに、x、y、zは(2)により題意の式を満たすが、(1)を満たさないから矛盾する。 したがって、nが3以上の整数のとき、題意の式を満たす整数x、y、zは」x=y=z=0だけである。終。 この回答の(2)の下からをやることの持つ意味と、なぜ少なくともひとつは奇数になれば、ゆえににつながるかを詳しく教えてください

みんなの回答

  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.1

(2)でx/2=X、y/2=Y、z/2=Zとおけば、X^n+2*Y^n=4*Z^nが満たされることになります。つまり、(1)がまた成り立つわけで、X、Y、Zは2の倍数である… と繰り返していくとx/2^k、y/2^k、z/2^kも (x/2^k)^n+2*(y/2^k)^n=4*(z/2^k)^nを満たす…※というわけです。 x=a×2^b(aは奇数)と表せます。同様にyとzも表せます。 つまり、(2)を繰り返していくとx、y、zのうちどれかは必ず奇数になります。 例えば、x=10だったら、x/2は奇数になりますし、x=12だったら、(x/2)/2は奇数になります。 よって、 >仮定より、x、y、zのうち少なくとも1つは0でない。0でない整数は全て、2のp乗かける(2q-1){p、qは整数でpは0以上}の形に表される。よってx、y、z、の0でないものの内、2の指数pの最小のものをNとすると、x/2のN乗、y/2のN乗、z/2のN乗のうち少なくともひとつは奇数となる。 となるわけです。 ここで、x/2のN乗=A、y/2のN乗=B、z/2のN乗=Cとおくと※より A^n+2*B^n=4*C^nを満たします が、ここで、仮定(x=y=z=0でない)よりA、B、Cのどれかは奇数になります。しかし、これは(1)と矛盾します。よって、… というわけです。

awer787
質問者

お礼

ありがとうございます。あなたは東京大学のひとですね MAYBE

関連するQ&A

  • 数学Aの問題です。

    nが3以上の整数の時、xのn乗+2掛けるyのn乗=4掛けるzのn乗はx=y=z=0以外に存在しないことを証明せよ。 この問題の解き方を詳しく教えて下さい。お願いします

  • 高校数学の整数問題です

    [問題] 素数pに対してpx^2+xが整数となるような有理数xをすべて求めよ。 これを取り扱った授業では次のような解説がありましたが、(4)の式から【 】部へともっていく論理の展開が分かりません。  ―・―・ー・―・― [解答] xは有理数ゆえ、x=n/m …(1) とおける。 (m,nは互いに素な整数で、m>0 …(2)) これを与式に代入して、 p(n/m)^2+(n/m)=k (k:整数) …(3) とすれば、 k=(pn^2+mn)/m^2 ={n(pn+m)}/m^2 …(4) 【mとnは互いに素ゆえ、kが整数となるには素数pがmの倍数、つまりmはpの約数であることが必要。】  ∴m=1 or p (i) m=1のとき (4)よりk=n(pn+1)となるから、n,pは整数より、kも整数となり成立。 このとき(1)より x=n (ii) m=pのとき (4)よりk={n(pn+p)}/p^2={n(n+1)}/p m(=p)とnは互いに素より、n+1がpの倍数と分かり n+1=pl (l:整数) …(5) とおけば、k=nl(=整数) となる。 このとき(1)、(5)より x=n/m=(pl-1)/m =(pl-1)/p=l-(1/p) 以上(i)、(ii)より x=n または x=l-(1/p) (n,lは任意の整数)  ―・―・―・―・― 僕の思考回路としては、(4)の式を見て、kが整数ということは 分子のn(pn+m)がm^2を因数にもつ、 つまりn(pn+m)=●m^2 (●:整数) と考えたのですが、この後の進め方が分からず手が止まりました。 解説の論理展開の意味がお分かりの方、ご教授ください。

  • 不等式の問題がわかりません

    (1) 2x+3y≦6n, x≧0, y≧0 (aは正の整数) を満たす点P(x,y)で、x,yがどちらも整数であるもの(格子点)の個数を求めよ。 (2) 2x+3y+6z≦6n, x≧0, y≧0 z≧0 (aは正の整数) を満たす点P(x,y,z)で、x,y,zがすべて整数であるもの(格子点)の個数を求めよ。 という問題で、 (1)は不等式を図示して y=k(k=1,2・・・)とy=-(2/3)x+2n の交点は( 3n-(3/2)k , k ) 交点が整数であるために2k=mとおくと、 y=m上の格子点の数は 3n-3m+1 よって、1≦y≦2nにおいて、y=(偶数)上の格子点の数は Σ[m=1,n](3n-3m+1) =(3/2)n^2-(1/2)n また図から、y=2k-1上の格子点の数は y=2k=m上の格子点の数より1多いので、 1≦y≦2nにおいて、y=(奇数)上の格子点の数は Σ[m=1,n]{3n-3m+2} =(3/2)n^2+(1/2)n y=0上の格子点の数は3n+1より、 求める値は (3/2)n^2-(1/2)n+(3/2)n^2+(1/2)n+3n+1 =3n^2+3n+1 ここまでは分かりました。 (2)はどうやっていいか手の付け方も分かりません。 (1)を使って簡単にして解くような気はします(分かりませんが)。 分かる方お願いします。

  • 数学です

    (n+1)^2-n^2=2n+1を用いて次の問いに答えなさい。 (1)自然数tが2n+1=t^2をみたすとき、tは奇数であるから、t=2k+1とかける。このとき、nをkの式で表しなさい。 (2)k=3のとき、x^2+y^2=z^2をみたす自然数の組(x , y , z)を求めなさい。 (3)フェルマーの最終定理について述べなさい。 よろしくお願いします。ちなみにx^2というのはxの2乗という意味です

  • 数学 高校受験過去問題の解答方法を教えて!

    問題1 √7+2の整数部分をx、小数部分をyとするとき、y2 - 2x + 4y + 5の値はいくつか? y2:yの二乗です。  答え:0  解答方法を教えて下さい。 問題2 連続する2つの正の奇数m、nが m2-n2=48を満たすとき、mはいくつになるか? m2:mの二乗 n2:nの二乗  答え:13 解答方法を教えて下さい。 よろしくお願いします。

  • 数学的帰納法

    先日模試があったのですが、自分の解答のどこが誤りなのか分かりません…。 nを正の整数とする。xとyの方程式 3x+4y=n…ア について、次の問に答えよ。 問 kを正の整数とする。n=3k+1のとき、方程式アを満たす0以上の整数x,yが存在することを示せ。 自分の解答↓ 1)n=4のとき ア⇔3x+4y=4 (x,y)=(0,1)はこれを満たすので、このときアを満たす0以上の整数x,yは存在する。 2)n=3k-2(k=2,3,4…)のとき、 アを満たす0以上の整数x,yは存在すると仮定する。 このとき、x=α、y=β(α、βは0以上の整数)とすると、 3α+4β=3k-2…イ が成立する。 このとき、n=3k+1のときでもアを満たす0以上の整数x,yは存在することを示す。 3x+4y=3k+1…ウとする。 ウ-イ 3(x-α)+4(y-β)=3であり、(x-α、y-β)=(1,0)はこれをみたすから、(x,y)=(1+α、β)はウをみたす。 よって、n=3k+1のときでも、アを満たす0以上の整数x,yは存在する。 以上のことから3でわると1余る4以上のすべての自然数nについて、アをみたす0以上の整数x,yは存在することが示された。 よって題意は示された。 と解答したのですが…。 実際解答したときは、かなり急いでいたので、2)→1)のように、 「n=3k-2で成り立つことを仮定」→「n=3k+1で成り立つ」→「n=4のとき成り立つ」というふうに順序が少し変になってしまいました。 採点欄のところには「仮定を用いてるので証明とはいえない」と書かれてしまったのですが、数学的帰納法を用いるなら、仮定を用いるのはふつうではないのでしょうか? 数学的帰納法だと伝わらなかったのでしょうか?? そもそも根本的におかしいのでしょうか?? どなたかお願いします。

  • 数学(ベクトル)の問題

    http://okwave.jp/qa/q8022847.html のNO.7の回答より、 さらに途中式を書いたのですが、 L^2 = m(t-n(s))^2-(a1^2+b1^2+c1^2 ) {(c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s)/(a1^2+b1^2+c1^2 )}^2+(a2^2+b2^2+c2^2 ){(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}/{(a2^2+b2^2+c2^2 )} }+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } n(s)={c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}/(a1^2+b1^2+c1^2 ) = m(t-n(s))^2-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2/(a1^2+b1^2+c1^2 )+(a2^2+b2^2+c2^2 ){(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}/{(a2^2+b2^2+c2^2 )} }+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } = m(t-n(s))^2-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2/(a1^2+b1^2+c1^2 )+(a2^2+b2^2+c2^2 )(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } ところで {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2 = {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2 +2{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s +{(a1a2+b1b2+c1c2)s}^2 = {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2 +2{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s +(a1a2+b1b2+c1c2)^2 (*s)^2 これより、 L^2= m(t-n(s))^2+s^2 {(a2^2+b2^2+c2^2 )-(a1a2+b1b2+c1c2)^2/(a1^2+b1^2+c1^2 )} +s[2{(c2(z2-z1)+b2(y2-y1)+a2(x2-x1))-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s/(a1^2+b1^2+c1^2 )}] +{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 }-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2/(a1^2+b1^2+c1^2 ) 簡単、 L^2 =m(t-n(s))^2+ps^2+p1s+p2 =m(t-n(s))^2+p(s^2+p1s/p)+p2 =m(t-n(s))^2+p(s^2+p1s/p+(p1/p)^2-(p1/p)^2 )+p2 =m(t-n(s))^2+p(s^2+p1s/p+(p1/p)^2 )-(p1)^2/p+p2 まで、計算したのですが(間違っていたら申し訳ありません)、 ここから、どのように q=-p1/2p が導出できるのかがわからないです。 (rは導出できました。) 数式だらけで分かりづらいと思いますが、計算ミスを指摘しつつ、導出過程も分かりやすくお願いします。

  • 整数問題の証明

    「ある整数n(n+2)が8の倍数ならばnは偶数であることを証明せよ。」 という問題で、この問題の解答を一応書いておくと、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n=2k-1(kは整数)とおいて、 n(n+2)=(2k-1)(2k+1)=4k^2-1より、 n(n+2)は奇数なので8の倍数になりえず矛盾。 ゆえにnは偶数である」 ですが、私は、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n(n+2)=8k(kは整数)と表せるので、 n^2=2(4k-n)となり、n^2は偶数だから、 nが奇数ならばn^2も奇数なので矛盾。 ゆえにnは偶数である」 と解いたのですが、これは解答として成立しますか? 違うのであれば具体的にどこが違うのかもお願いします。

  • 数学1A 整数の性質の問題です。

    (x-n)(ay-n)=n^2ー(✳︎) ※n^2はnの二乗です。 pを素数とし、a=1、n=pとする。 (✳︎)を満たす整数x、yの組は全部で「タ」個ある。このうちyが最大となるものは、 x=p+「チ」、y=p(p+「ツ」)である。 このとき、yを4で割ったときの余りが2となるような40以下の素数pは全部で「テ」個ある。 タ=6 チ=1、ツ=1 テ=6 ツまでの答えは求められたのですが、最後のテが求められませんでした…。 解答解説よろしくお願いします!

  • 数学の問題です。これで合っていますか?

    「楕円(x^2)+(2y^2)=2の異なる2接線が直交するとき、その交点Pの軌跡を求めよ」という問の答えとして, 下のような解答を考えましたが, 論理が途中でおかしくなっている気がします. 一般的にはもっとスマートな解き方があるようなのですが, これでも大丈夫なのかどうか意見をください. よろしくお願いします. (途中計算は省略しました) -------------------- P(s, t)とおく. 直交する2直線のうち1つを m(x-s)+n(y-t)=0 ・・・(1) とする. この時、任意のm, nに対してs, tは存在すると考えられる. i ) m≠0 ∧ n≠0 のとき   n/m=k とすると、直線(1)はy=kx+(t-ks)とおける.   これと楕円(x^2)+(2y^2)=2が接するので,   まずyを消去してxについて整理すると, (1+2k^2)x^2+4k(t-ks)x+2{(t-ks)^2-1}   これの判別式DについてD=0より, D/4={2k(t-ks)}^2-(1+2k^2)(t-ks)^2+2(1+2k^2)=0 ⇔(2-s^2)k^2+2stk+(1-t^2)=0・・・(2)   点Pを通り(1)に直交する直線x=-ky+(s+kt) についても同様の操作を施し, 式(1-t^2)k^2-2stk+(2-s^2)=0・・・(3) が得られる.   ここで(2)+(3)より, (3-s^2-t^2)k^2+(3-s^2-t^2)=0 任意のkに対してこれは成立するから, kについて恒等式とみて   s^2-t^2=3・・・(4) これをP(s,t)の満たす式とすると, 題意を満たす. ii ) n=0 ∨ m=0 のとき   条件に適するのは(√2, 1) (-√2, 1) (√2, -1) (-√2, -1) の4点.   以上はいずれも(4)式を満たす. よって, 求める軌跡は半径√3, 原点中心の円.