• ベストアンサー

微分方程式の式変形について教えてください

微分方程式、 (1-1/u+2)du=1dx から e^u *(u+2)=Ce^x (C:定数)と参考書では式変形しているのですが、途中式がわかりません。 一応やってみたのは、 ∫1du-∫(1/u+2)du=∫1dx u-log|u+2|=x+C ここからどのようにlogを消していいのかわかりません。教えてください

noname#81393
noname#81393

質問者が選んだベストアンサー

  • ベストアンサー
  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.2

こんばんは。 u-log|u+2| = x+C log|u+2| = u - x - C ここで両辺の、eの指数を取れば |u+2| = e^(u-x-C) |u+2| = 定数×e^(u-x) ・・・でよいと思いますが。

その他の回答 (1)

  • kuzuhan
  • ベストアンサー率57% (1586/2775)
回答No.1

両辺のexp(つまりe)をとると、逆関数よりlogが消去することが出来ます。 対数関数と指数関数はwikiを参照してください。 http://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0%E9%96%A2%E6%95%B0 http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E9%96%A2%E6%95%B0

参考URL:
http://www.math.kochi-u.ac.jp/docky/bourdoki/bangaihen/xx/node48.html

関連するQ&A

  • 微分方程式の途中の変形が分かりません。

    変数分離形の微分方程式 (x^2*y-x^2)dy=(x*y^2+y^2)dx を解くのですが、 ∫(1/y-1/y^2)dy=∫(1/x-1/x^2)dx と変形し、 log|y|+1/y=log|x|-1/x+C (C:積分定数) まで、解きました。 これはy=○○の形にどうやって変形すればよいのでしょう? 何を使うなどのヒントでいいので、よろしくお願いします。

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 微分方程式の問題

    dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3  [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。

  • 偏微分の問題です

    偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。

  • 常微分方程式です

    dy/dx=x^2+y^2/xy の微分方程式をy=uxとおいて求めたんですけど u+xdu/dx=1+u^2/u-u =1/u ∫u du=∫1/x dx u^2/2=log|x|+C C=u^2/2-log|x| =y^2/2x^2-log|x| になったんですがこれであってますか?

  • 微分方程式について。

    微分方程式の一般解をもとめます。 (1)dy/dx=(y^2)+y これは、線形微分方程式を使ってとくのでしょうか?? (2)(x-y)y'=2y 同次形で解きましたが 途中の式、 ∫du(1-u)/(u+u^2)=∫1/xでの右辺の積分がわかりません。 両者の解答の導き方を教えてください。お願いします。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 微分y*(dy/dx)+x-2y = 0について

    微分方程式について教えて下さい。 とある問題集があり、そこには最初の式と途中経過があるのですが 自分が試したところではどうしても結果が一致しませんでした。 問題は以下の通りです。 式中の y/x = u として進めていきます。 y*(dy/dx)+x-2y = 0       (1) -> 1+u(u+x*(du/dx)) = 2u    (2) -> ∫((u/(u-1)^2)du = ∫(-1/x)dx   (3) -> (u-1)x=C*e^(1/(u-1))      (4) (1)が最初の方程式、(4)が結果です。 自分でやると(2)のところでは 1+u(dy/dx) = 2u になります。 (2)から(3)への計算は出来ますが(3)から(4)では log(u-1)+u = -log(x)+C → log(u-1)x = C-u になり先に進めなくなります。 きっとどこかで勘違いしているのだと思うのですが、 何日かおいてみても間違いが分かりません。 どなたか、教えていただけないでしょうか。 よろしくお願いします。

  • 一階常微分方程式の本の答えと比較

    次の微分方程式の一般解を求めよ。 y^2 + x^2 dy/dx = 2yx (y/x)^2 + dy/dx = 2 y/x dy/dx = x du/dx + u から u^2 + x du/dx + u = 2u すなわち x du/dx = -u^2 + u これを変形して 1/(u^2-u) du/dx = -1/x     ←ここから自分の答えとは異なり始めます 両辺を積分して ∫( 1/(u^2-u) ) du = -∫1/x dx ∫( 1/(u-1) - 1/u ) du = -∫1/x dx から log|(u-1)/u| = -log|x| + C これより C' = e^C (u-1)/u = C'/x u=y/x を代入すると (y-x)/y = C'/x 更に整理して y = x^2/(x-C') と、本の答えには書いてあります。 自分の答えは x du/dx = -u^2 + u これを変形して 1/(u-u^2) du/dx = 1/x     ←ここから本の答えとは異なり始めます 両辺を積分して ∫( 1/(u-u^2) ) du = -∫1/x dx ∫( 1/u - 1/(1-u) ) du = ∫1/x dx から log|u/(1-u)| = log|x| + C これより C' = e^C u/(1-u) = C'x u=y/x を代入すると y/(x-y) = C'x 更に整理して y = C'x(x-y) y = C'x^2-C'xy 1 = C'x^2/y-C'x 1 + C'x = C'x^2/y (1 + C'x)/C'x^2 = 1/y y = C'x^2/(1 + C'x) になりました。 本の答えとは等価ではないようです。 でも、両辺の符号を変えなかっただけなので、自分の計算方法でも正しい答えが得られると思っています。どこから間違ってしまったのか教えてください。どうかお願いします。

  • 微分方程式の検算

    次の微分方程式の一般解を求めよ。 dy/dx = 1/(2y + x + 1) u = 2y + x + 1とおくと u' = 2y' + 1 これを用いると微分方程式は、 y' = 1/2 (u'-1) = 1/u すなわち、 ∫(u/u+2) du = ∫dx 積分を実行して u - 2 log |u + 2| = x + C であるから、求める解は 2y - log(2y + x + 3)^2 = C' ・・・と本には書いてあります。 しかし、 u - 2 log |u + 2| = x + C で、u = 2y + x + 1 と元に戻すと 2y + x + 1 - 2 log |2y + x + 1 + 2| = x + C 2y + 1 - 2 log |2y + x + 1 + 2| = C      ;x を消しました 2y + 1 - 2 log |2y + x + 3| = C 2y + 1 - log (2y + x + 3)^2 = C ・・・と、2y "+ 1" - log (2y + x + 3)^2 = Cになりませんか? CがC'になっているところを見ると、まさか+1がCに取り込まれてしまったんですか? 検算をお願いします。