• ベストアンサー

ラプラスの方程式の問題について。

「原点におかれた点電荷qによる電位φ(r)が、原点以外の点でラプラスの方程式∇^2φ(r) = 0を満たすことを示せ」 という問題があるのですが、解答の示し方で(ηは偏微分と思ってください) η^2(1/r)/ηx^2 = -((1/r^3)-(3x^2・1/r^5)) より ∇^2 = -qk(3/r^3-3(x^2+y^2+z^2)/r^5)=0 という示し方をしているのですが、なぜ上式から下式が導けるのでしょうか? そもそも偏微分η(1/r)/ηxという書き方の意味がよく分かりません…。なぜ普通(?)は η(r)/ηx という書き方だと思うのですが、それが1/rになると、式的にどういう意味になるのでしょう?それがどう下式を導くのでしょうか? 分からない部分が多くてすみません。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Meowth
  • ベストアンサー率35% (130/362)
回答No.2

xでなりたてば ∂^2(1/r)/∂x^2 = -((1/r^3)-(3x^2・1/r^5)) ∂^2(1/r)/∂y^2 = -((1/r^3)-(3y^2・1/r^5)) ∂^2(1/r)/∂z^2 = -((1/r^3)-(3z^2・1/r^5)) がなりたつから ∂(1/r)/∂xは∂/∂x(1/r) とおなじ ∂f/∂x のfに直接関数形をかいただけ 関数形がながければ∂/∂xを先にかいて 関数を後に書く ちなみに、1/r だからx,y,zのデカルト座標でなく 球座標で表したほうが簡単。 ∇^2 φ=(1/r^2)∂(r^2∂φ/∂r)/∂r にだいにゅうすれば(r^2∂φ/∂r)は定数になる

nabewari
質問者

お礼

回答ありがとうございます。 解決しました。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

難しく考えずに, 電位 φ(r) を x, y, z のそれぞれで偏微分したらいいんじゃないかなぁ.

関連するQ&A

  • ラプラスの方程式

    点電荷による電位Vがラプラスの方程式を満たすことを証明したいのですがどうすればいいでしょうか? r=√(x^2+y^2+z^2)

  • ラプラス方程式に関して

    こんにちわ. ラプラス方程式に関して,分からないことがあるため,質問させてください. 電磁気学でのラプラス方程式は電荷分布がない空間内において,境界条件を決めることで,その空間内での電位分布を計算することが出来ると思います. このラプラス方程式は電気回路でも成立するのでしょうか? たとえば,抵抗が格子状に無限に接続された電気回路において,任意の2点間に電位差Vが与えられているとします. このとき,その周囲の格子点での電位はラプラス方程式から求められるのでしょうか? ご存知の方もおられると思いますが,これは無限抵抗格子の電位差を求める問題の解法の冒頭にある記述です. ここでは問題を解く前提として,格子点の電位はラプラス方程式を満たすという説明がありますが,ラプラス方程式を電気回路に適用しているテキストなどが見受けられなく,電磁気学でのラプラス方程式がどのようにして電気回路に適当されるかがよくわかりません. 詳しい方がおられましたら,教えてください.

  • ラプラス方程式

    ラプラス方程式 ラプラス方程式は、ΔΦ=0で表されます。 Δ=∇・∇=(∂^2/∂^2x,∂^2/∂^2y,∂^2/∂^2z)です。 ここで、ある関数Φについてのラプラス方程式は、 (1)(∂Φ^2/∂^2x,∂Φ^2/∂^2y,∂Φ^2/∂^2z)=0 (2)∂^2/∂^2x(Φ(x,y,z))+∂^2/∂^2y(Φ(x,y,z))+∂^2/∂^2z(Φ(x,y,z))=0 と2つの定義を見つけました。 (1)はΔΦ=0より分かるのですが、(2)はどのように導かれるのでしょうか? また、関数Φはスカラー関数Φ(x,y,z)と言われたりするのですが、 x,y,zであればすでにベクトルではないのでしょうか? 良く分かりません・・・ ご回答何卒よろしくお願い致します。

  • ラプラス方程式の解析解

    電磁気学を勉強しているのですが,分からないことがあるので質問させてもらいます. 静電場内にある電荷が作る電位分布を示す方程式としてラプラス方程式(∇^2*V=0)があると思います. ラプラス方程式とポアソン方程式の違いまでは理解できていると思います. 2次元のラプラス方程式は以下の式を変数分離法を用いて解くことで,直交座標系や球面座標系として考えることで,解析解が得られると理解しています. (ここまではたどり着くことが出来ました) (∂^2/∂^2x)V(x,y)+(∂^2/∂^2y)V(x,y)=0 分からないのは,ここから実際の電位分布を求める方法です. 具体的には,xy平面上の原点にポテンシャルV0がある場合,このV0による電位分布を求めることが出来ません. 直交座標系で考えると一般解は,A,B,C,D,kを定数として,次のようになると思います. V(x,y)=(A*exp(kx)+B*exp(-kx))*(Csinky+Dcosky) 境界条件から未知定数を求めたいのですが,うまくいきません・・・. 原点にポテンシャルがあるので,x→∞でV→0,y→∞でV→0,x=0,y=0でV=V0が境界条件になると思ったのですが,y→∞で(Csinky+Dcosky)は0に収束しません. 境界条件の設定が間違っているのでしょうか? 数値解では原点にポテンシャルを設定している解説は見つけられたのですが,解析解では資料がなく,どうすればいいか困っています. すみませんが,教えてください.

  • あるポアソンの方程式の問題。

    「半径Rの無限に長い円筒の内部に一様な密度ρで分布した電荷による電位を、ポアソンの方程式を解くことによって求めよ。」 という問題があるのですが、解答では中心軸をZ軸として、中心から距離r = √x^2 + y^2の距離の電位Φ(r)を求めているのですが、このときのポアソンの方程式の立て方が分かりません。 元の式は Φxx + Φyy = -ρ/ε だと思うのですが、上記のようにrに置き換えた場合どういう式の変形の方法でrでポアソンの方程式を作るのでしょうか? よろしくお願いします。

  • ポアソンの方程式の問題について。

    「半径Rno無限に長い円筒の内部に一様な密度ρで分布した電荷による電位を、ポアソンの方程式を解くことによって求めよ。ただし、円筒の側面上の点における電位を0とする」 という問題があるのですが、その解答でポアソンの方程式をr=√x^2+√y^2であらわすために変形をしているのですが、 ∇^2Φ(r) = d^2Φ(r)/dr^2 + 1/r・dΦ(r)/dr という変形をしているのですが、右辺の変形(?)の意味が分かりません…。元の式(と私が思っている∇^2Φ(r) = Φxx + Φyy + Φzz)をどう変形したらこうなるのでしょうか? もしくは上記の変形をせずに、解くやり方はないでしょうか…? よろしくお願いします。

  • 偏微分方程式 ラプラス方程式 ポアソン方程式

    微分方程式で用いられる線形,非線形の意味がよくわかりません。 どのように区別されるのでしょうか? また、ラプラス方程式は、一階の偏微分方程式の例でよくでてきて、 ポアソン方程式は、二階の偏微分方程式の例でよくでてきます。 ラプラス方程式,ポアソン方程式はどちらも線形なのでしょうか? テキストや参考書にある解法に習えば、例題や練習問題は解けるのですが、 用語の意味がまるで理解できていません・・・ ご回答よろしくお願い致します。

  • 点電荷が作る電位分布の求め方

    点電荷が作る電位分布の求め方 お世話になります。 1次元の電位分布についての質問です。 高校の物理で習ったように、1[C]の点電荷(あるいは微小な大きさを持つ電荷)が原点にあるときの電位分布は、無限遠をゼロとして、 φ = (1/(4πε)) * (Q / r) ・・・(1) で表せますよね? 同じ分布をポアソン方程式(div (grad φ) = -ρ/ε)から求めるにはどうすればよいでしょうか。 1次元の場合ポアソン方程式は単純な2階微分方程式になると思いますので、rで2階積分してみたのですが、原点以外ではρ= 0 のため φ が一次関数になってしまい、(1)のような反比例の関係にはなりそうにありません。 どこか考え方が間違ってるのだと思いますのでご指摘いただけると助かります。 よろしくお願い致します。

  • ラプラス方程式の境界値問題について

    「次のラプラス方程式の境界値問題を解け。ただしD>0とする。 ・u_xx+u_yy=0 (x^2+y^2<D^2) ・u(x,y)=f(x,y) (x^2+y^2=D^2) *・u_xxはxの2回微分を示し、u_yyもyの2回微分を示す。  ・2式は連立方程式である この問題が自分でもわかりませんし友達に聞いてもわからないようなので教えてください。お願いします。

  • ラプラスの方程式球面座標表示

    あるサイトを参考に次の様な流れでラプラスの方程式の球面座標表示を導きたいのですが 途中の式が間違っているのか、最終的な式が導けません。 特に下の3の手順で私の式のやり方が間違っているのかもしれません。 正しいかどうかご指摘くださる方、よろしくお願いします。 >は自分のコメントです。 r=r(x,y,z),θ=θ(x,y,z),φ=φ(x,y,z) x=rsinθcosφ y=rsinθsinφ z=rcosθ まず,これらの式から 1.r^2,tanθ,tanφを計算. > r^2 = x^2 + y^2 + z^2 > tan^2θ = (x^2+y^2)/z^2 > tanφ = y/x 2.1を偏微分することによって∂r/∂x,∂r/∂y,∂r/∂z,∂θ/∂x,∂θ/∂y,∂θ/∂z,∂φ/∂x,∂φ/∂yをすべてx,y,zで表現.あとでこれらの2階偏微分も必要になるが. >∂r/∂x = sinθcosφ, ∂r/∂y = sinθsinφ, ∂r/∂z = cosθ >∂θ/∂x = (cosθcosφ)/r, ∂θ/∂y = (cosθsinφ)/r, ∂θ/∂z = -sinθ/r >∂φ/∂x = -sinφ/(r*sinθ), ∂φ/∂y = cosφ/(r*sinθ), ∂φ/∂z = 0 3.∂/∂x=∂/∂r・∂r/∂x+∂/∂θ・∂θ/∂x+∂/∂φ・∂φ/∂x これをさらに偏微分して∂^2/∂x^2を偏微分の記号で表現. ちょっとしんどいですがガッツ. 同様に∂^2/∂y^2,∂^2/∂z^2も計算. >この∂^2/∂x^2, ∂^2/∂y^2,∂^2/∂z^2は単純に >(∂/∂x)^2=(∂/∂r・∂r/∂x+∂/∂θ・∂θ/∂x+∂/∂φ・∂φ/∂x)^2 >(y, z同様)と計算しては間違いでしょうか? 4.∂^2/∂x^2+∂^2/∂y^2+∂^2/∂z^2を偏微分記号の表示のまままとめる. 5.2で求めたものを代入.すると意外に綺麗にまとめれるものが出てくる. >最終的に出た式 >∂^2/∂r^2+∂^2/(r^2∂θ^2)+∂^2/(r^2*sin^2θ∂φ) >求めたい式は >∂^2/∂r^2+2*∂/(r∂r)+∂^2/(r^2∂θ^2)+∂/(r^2*tanθ∂θ)+∂^2/(r^2*sin^2θ∂φ) >です。 >自分で導いた式と比べると、2*∂/(r∂r)+∂/(r^2*tanθ∂θ)が欠けています。