• ベストアンサー

反対解釈の正当性

「AであればBである」という法規範があるとします。 このとき,「反対解釈から,AでなければBでない」と,よく言いますよね。 でも,「AであればBである」という命題が真であるとき,真であるのは,「 BでなければAではない」(対偶)ですよね。 それなのに法律家は,なぜ,対偶解釈ならぬ反対解釈なるものを認めているのですか? 教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • fix2008
  • ベストアンサー率68% (44/64)
回答No.1

分野的にいえばそれは法理学ないしは法哲学と呼ばれるものです。 この辺は若干疎いので明確には言えませんが、「AであればBである」とその対偶「BでなければAではない」は真である、ということは同じことを言っているということなのです。しかし、法解釈において、これをしてもあまり意味はありません。 たとえば、ある人の部屋の入り口に 「イヌ」は「入室禁止」である とあったとします。そこへネコを持った人が、はたして自分が入れるのかどうかを考えたとします。そこで対偶をとって 「入室禁止」でなければ「イヌ」ではない、 と対偶したところで自分が入れるのかどうかの判断はつかないでしょう。そもそもその人は自分が入室禁止かどうかを知りたいのに、「禁止でなければ」ということを言われても困るだけなのです。 そこで、どういう意味でこれがあるのかを考えます(制度趣旨)。 そういえば、この人は小さい時に犬にかまれて以来、犬だけがものすごく嫌いなのだということを知っていれば、その反対解釈として、 「イヌ」でなければ「入室禁止」ではない という結論を導くでしょう。そうするとそのネコを持った人は安心して入ることができます。 これとは異なり、 そういえば、この人は小さい時に犬にかまれて以来、動物全般がものすごく嫌いなのだということを知っていれば、その類推解釈として、 「ネコ」であっても「入室禁止」である という結論を導くでしょう。そうするとその人は帰るしかありません。 このように結論が異なるのは、そのルールがなぜ作られたのかを考えたからです。法律でよく「制度趣旨」は何か、というのはこのことなのです。多種多様な生活全般を規律するには法律が必要不可欠ですが、その法律でも全部をカバーすることは不可能なのです。しかし、何らかの手がかりからそれに対しても回答を得る必要があるのも事実なのです。そこで制度趣旨から妥当な結論を導くため、反対解釈や類推解釈といった手法が必要になるのです。

17891917
質問者

お礼

大変丁寧なご回答,ありがとうございます。 結局,法律というものは立法目的(制度趣旨)があるのだから,制度趣旨からみて妥当な結論を導く必要があるところ,それを条文で根拠付ける必要があるために,「反対解釈」や「類推解釈」という手法が用いられるということなのでしょうね。

関連するQ&A

  • 命題とその対偶、真偽について

    高校数学のある命題についてです。 a,b が整数であるとき、以下の命題があります。 ・命題:   a*b が奇数のとき、aまたはbのどちらか一つが奇数である。 このとき、命題について対偶を考えます。 まず、「a*bが奇数である」 の否定は 「a*bが偶数である」 また、「aまたはbのどちらか一つが奇数」の否定は 「aが奇数 または bが奇数」の否定なので、ド・モルガンの法則より 「aが偶数 かつ bが偶数」、つまり「a,bの両方が偶数」 となり、本命題についての対偶は以下の様になると考えました。 ・対偶:   a,bの両方が偶数のとき、a*bは偶数となる。 この命題の対偶は真となりますが、命題は疑となると思います。 一般的に命題とその待遇の真偽は一致するはずなので、 何かが間違えているのではないかと思っています。 (1) 命題は真? (2) 対偶のとり方が間違えている? (3) 対偶は真ではない? (4) 命題と対偶の真偽は一致しない? 大変困っております。どなたか教えて下さい。お願いいたします。

  • 背理法と対偶法の関係について

    自分の使っているテキストに 対偶法も一種の背理法と考えることが出来る。 命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 命題を背理法で証明するために「pならばq」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真となる。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。 という事が書かれており これは 「対偶法の考え方でみると「対偶が真」と証明された時点で、自動的に命題が真であると考えますが 対偶法の「対偶が証明されると、元の命題が真になる」 という流れが自動的にではなく背理法によって証明されている、と考えることが出来るので 対偶法は背理法であると考えることが出来て 「対偶法は一種の背理法と考えることが出来る」ということになる」 ということが書いてあるということで理解できました。 しかし、なぜ「一種の」と書かれているのか気になっています。 そこはあまり深く考えなくてもいいと別の場では言われたのですが、ここがわからないと理解できた気がせず、どうしても気になってしまい悩んでいます。 自分が考えているのは 対偶法を背理法として考えた場合、 それは「 背理法の中の対偶を示して証明する形式のもの」 を表している。 しかし背理法は対偶以外を示して証明することも出来るので 「背理法の何個かある証明の形式のうちの一つと同じと考えることが出来る」という意味で 「一種の背理法」という表現がされている ということかと考えています。 この考え方で間違っていることはあるでしょうか? どうかよろしくお願いします。

  • 対偶法も背理法の一種という考え方について

    あるテキストの「対偶法も背理法の一種として考えることが出来る」ということについての説明で 命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 「pならばq」を背理法で証明するために「pならば q」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。 という説明があるのですが なぜこれが「対偶法も背理法の一種として考えることが出来る」ということになるのか理解できず 出版社に問い合わせたところ 「対偶が成り立つので、矛盾が生じ、背理法が成立する。 よって、元の命題が成立する」 ということのようなのですがいまいち理解が出来ません。 私の考えでは、 対偶法による証明法の場合、対偶が証明された時点で自動的に命題は真である、と考えますが 対偶をつかって背理法によって命題が真であることを証明できるので 対偶が証明されたあと、自動的に命題が真であるということではなく 背理法によって命題が真であると言っているということが出来るので 対偶による証明法も一種の背理法と考えることができる ということだと思ったのですが、出版社の説明と私の考えはどのあたりが違うのでしょうか? 私はあまり数学が得意ではなく、これも数Iのレベルのものなので そんな私でも理解できるように説明していただけると助かります。 よろしくお願いします。 この質問とは違うのですが、これら関する質問を以前ここでさせてもらい、参考にさせてもらいました。 その時回答をしてくださった方ありがとうございました。

  • 命題

    次の問題を教えていただきたいのですが。 次の命題の逆、真偽、対偶を作りそれぞれの真偽を示せ。 χ>0ならばχ^2>0 答えには 対偶:「χ^2≦0ならばχ≦0」真の命題。と書いてありました。 元の命題が真だから、元の命題と対偶の真偽は一致するので対偶も真という事は分かるのですが、具体的にいうとどういう事なのですか?「元の命題と対偶の真偽は一致する」という事からしかわからないのですか?

  • 対偶による証明法と背理法による証明について

    数学Iの内容なのですが自分の使っている参考書に 対偶による証明法も一種の背理法と考えることが出来る。 命題p⇒qが真であることをいうために¬qと仮定して¬pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも¬q⇒¬pとは文字通りこれは対偶のことで、これが真と言えたから 自動的に元の命題が真といってもいい と書いてあるのですが、色々な所で質問してみたのですが どうしてもあまり理解ができません。 (1)命題p⇒qが真であることをいうために¬qと仮定して¬pが導かれたとする 導かれた形は¬q⇒¬p 背理法の仮定の形では¬q⇒p (2)pではないからこれは矛盾で背理法が成立したことになる この導かれた形が¬q⇒¬pで命題の対偶の形をしていて それによっても命題が真であることが示されているから 対偶による証明法も一種の背理法と考えることが出来る、と書かれているのでしょうか?

  • 対偶を示して証明する背理法について

    対偶証明法も背理法の一種と考えることが出来る。 という考え方があるのですが それで、その理由について 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 命題を背理法で証明するために「pならばq」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真となる。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。」 という説明があるのですが 自分は 対偶証明法は 対偶を示して証明する形式の背理法と 「対偶を示して証明する」という流れが同じなので 対偶証明法も 見方によって 「対偶を示して証明する形式の背理法」と考える事が出来るので そういう意味で 「対偶証明法も背理法の一種と考えることが出来る」 ということになる、と 理解したのですが この考え方は間違っているのでしょうか?

  • 背理法による証明と対偶による証明法について

    自分の使っている参考書に 「対偶による証明法も一種の背理法と考えることができる。 命題p→qが真であることをいうために ̄q(qでない)と仮定して ̄pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも ̄qならば ̄pとは文字通り、これは対偶のことでこの対偶が真といえたから自動的に命題が真といってもいい」 と書かれているのですがいまいち意味がわかりません。 どういうことなのでしょうか? 数1の内容なのですがあまり数学が得意ではないので簡単に教えていただけると助かります よろしくお願いします。

  • 論理と集合

    すべての正の数xに対してa+x>0が常に成り立つならばa≧0 この命題を対偶を用いて証明せよ この問題なんですが答えが真になることはわかるけど対偶がわかりません 対偶がわかるかたおしえてください! よろしくおねがいいたします

  • 背理法と対偶法について

    少し長くなるのですがお願いします。 私の使用している参考書に 「対偶による証明法も一種の背理法と考えることができる。 命題p→qが真であることをいうために¬q(qでない)と仮定して¬pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも¬qならば¬pとは文字通り、これは対偶のことでこの対偶が真といえたから自動的に命題が真といってもいい」 と書かれていて この部分の意味がわからなかったので出版社に問い合わせました。 すると、このような回答を頂きました。 -------------------------------------------------------------------- 背理法は、 「pという前提条件下で、結論のqを否定して、¬qと仮定すると、矛盾が生じる。よって、p⇒q」とする論法ですね。対偶法において、この矛盾に相当するものが、 「¬pかつp」という矛盾です。なぜなら、¬q⇒¬pを示すのが対偶法だからです。 つまり、対偶:¬q⇒¬pが示されれば、この時点で「¬pかつp」という矛盾が生まれ、背理法が成立したことになります。 -------------------------------------------------------------------- 私は以前、この事に関する質問をここでして回答をいただいたのですが その時に頂いた回答をもとに考えたのがこの考え方です。 ---------------------------------------------------------------------- 「pならばq」を証明しようとしていて 「pならばq」に背理法を使って「pであって¬q」と仮定する。 その過程で「対偶 ¬qならば¬p」が証明できたとする。 「pであって¬q」と仮定しているのに対偶 ¬qならば¬p なので pではないため矛盾する。  よって「pならばq」は真である。 命題の対偶が証明された場合、普通は自動的に命題が真であると考えますが この説明文では 「命題の対偶が証明されたあと、背理法を使って命題が真であることを証明することになるので 対偶による証明法も一種の背理法と考えることが出来る」 ということが書かれている。 -------------------------------------------------------------------------- 出版社から頂いた回答と、この自分の考えが 合っているのか自信がもてません。 出版社にはこの事以外にも色々質問していて、何度もメールしづらいのでここで質問させてもらいました。 よろしくお願いします。 

  • 対偶法による無理数の証明について教えて下さい。

    √2が無理数ならば√2+1は無理数であることを証明せよ。 を背理法ではなく、対偶法で以下のように考えました。 √2+1=P(有理数)とすると√2=P-1(有理数)となり√2が有理数であること が証明された。 よって対偶法が真なので元の命題も真である。 これでも問題ないですか?