• ベストアンサー

1階上微分方程式(同次型)

2xy - (3x^2 + y^2)y' = 0 を解くと y^3 = (x^2 + y^2)*c (c:任意定数) となりました。 これは合っているのでしょうか。 また、y=の式にはできないのでしょうか。 y^2 * (y - c) = cx^2 で合っていますか。

質問者が選んだベストアンサー

  • ベストアンサー
  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

r = x^2+y^2 と変数変換すると微分方程式を満たすことが確かめられます。難しい問題なのに、すごいですね。解をy= … の形にするには、 (y-f(x))(y-g(x))(y-h(x))=0 と因数分解しなくちゃいけません。これは三次方程式の解法(カルダノの公式)を使えば可能。手でやるとしんどいが、数式処理システムがあれば一瞬でやってくれます。 > y^2 * (y - c) = cx^2 はx=…の形にあとちょっとまでまとめたんですね。

mamoru1220
質問者

お礼

ありがとうございました。

関連するQ&A

  • 微分方程式についてわからないことが・・・

    今 y'=-1/xy の微分方程式をときました。 ∫y dy=∫-x dx 1/2×y^2=-log|x|+C =-log{Cx{ e^(1/2×y^2)=-|Cx| =Cx これを微分方程式の解とします。 これを微分して与式になることを確認したいのですが 答えの両辺をxで微分して ye^(1/2×y^2)×y'=C 両辺にxかけて xyy'e(1/2×y^2)=Cx           =e^(1/2×y^2) よってy'=1/xy となり-がでてきません。 計算途中でC=±Cとしているので符号がおかしくなるのはわかりますが、確認の際は勝手にそれを考慮して-をつけてもいいのでしょうか? どのように解答をかいていけばいいのでしょうか? わかるかたお願いします。

  • 微分方程式についての質問です。

    微分方程式についての質問です。 問題.x^2-y^2+2xy*y'=0を解け。 上記の問題を同次形微分方程式の解き方で解くと、 x^2+y^2=Cx(Cは0でない定数) という一般解が求まりました。 ここで疑問なんですが、一般解を変形してy'を求めると y^2=Cx-x^2 y=√(Cx-x^2),-√(Cx-x^2) y'=(C-2x)/(2√(Cx-x^2)),-(C-2x)/(2√(Cx-x^2)) となるので、x=0,Cではy'が定義されないことになります。 この場合、一般解のxの定義域として「x=0,Cは除く」ということでいいのでしょうか? いろいろ考えると分からなくなってきました…

  • 1階の微分方程式

    解答の仕方が考えても良くわかりませんでした。やり方だけでもアドバイスお願いします。 関数が微分方程式を満たすことを証明せよ。 (1) y^2=2Cx+C^2 , y(y')^2+2xy'-y=0 (2) y=-x-1+Ce^x , y'=x+y C:定数

  • 完全微分方程式は、平ら?

    完全微分方程式についてなのですが、zの全微分dzが0。このとき関数z = f(x,y)はもとから変化のない定数関数といえるので dz=0 ならば z = C(Cは任意定数) …と本には解説が書いてあるのですが、f(x,y)=zが定数ということは、xy平面に平行な平面ということでしょうか? よろしくお願いします。

  • 二階非同次型線形微分方程式について

    (1+x^2)y"-2xy'+2y=(1-x^2)/xを解きたいのです。 解の一つとしてy=xlogxは与えられています。 ヒントとして未定係数法で解くと書かれてあったのですが、今一わからなかったので他の方法を使って途中まで解いてみました。ですが行き詰ったのでここで質問させていただきます。 以下自力での解法 y=cxと置き、cをxの関数とみなすと、 y'=c'x+c,y"=c"x+2c' 与式に代入して (1+x^2)(c"x+2c')-2x(c'x+c)+2cx=(1-x^2)/x x(1+x^2)c"+2c'=(1-x^2)/x 同次形について考える c'=uと置く x(1+x^2)u'+2u=0 -(1/u)u'=1/x(1+x^2) 両辺積分して log|u|=-log|sinθ|+C1 (右辺はx=tanθとして積分しました) u=C2/sinθ ここまで出来たのですが、ここから先が分りません。そもそもθのままなのでxになおすとθ=tan-1x、u=C2/sin(tan-1x)となり、計算が行き詰ってしまいます。 助けてください。

  • 同次形の微分方程式

    おそらく同次形の一階の微分方程式の問題で xy' = y + √(x^2-y^2) というもんだいをといてみました(勝手に同次形で・・・w) 最終的に arcsin(y/x) = log|x| + C (C;a.c) とまでいったので±e^(-C)=αとして x = α exp(arcsin(y/x)) にしたんですけども解答では y + √(y^2 + x^2) = βx^2 という形になっているのですが、どうしたらこんな形の一般解を 導くことができるのでしょうか。 アドバイスお願いします!

  • 微分方程式の途中で対数方程式が出てきて解けません

    回答者の皆様、いつもお世話になります。 微分方程式 (x^2+1)y´-xy=0 です。 単純に変数分離して (x^2+1)y´=xy y´/y=x/(x^2+1) (dy/dx)・(1/y)=x/(x^2+1) ∫1/y dy=∫x/(x^2+1) dx log|y|+C1=log|x^2+1|^(1/2)+C2 (Cは積分定数です) ここからが自信がありません… log|y|+loge^C1=log|x^2+1|^(1/2)+loge^C2 log{|y|C1}=log{|x^2+1|^(1/2)C2} |y|C1=|x^2+1|^(1/2)C2 |y|={ |x^2+1|^(1/2)C2 }/C1 y=±{ |x^2+1|^(1/2)×(C2/C1) } ∴ y=±{ |x^2+1|^(1/2)C } (任意定数Cにより±を明記する必要がなくなりますよね?) y=C√(x^2+1)と言えるのでしょうか? お手数をお掛けいたします。 又、別の問題になるのですが、 y´´´-3y´´+3y´-1y=e^(2x)+xという問題ですが、 右辺をxの一次式として考えて、2階微分すれば0なので、 3y´-1y=e^(2x)+xの微分方程式と考えても良いのでしょうか? それとも、特性方程式を3次式としてカルダノの解法を考えるべきなのでしょうか? アドバイスをお願い致します。

  • 微分方程式

    xy'=y+√(x^2+y^2)という微分方程式を誰か解いてください。 たぶん変数分離形で解くと思うのですがどうしても答えと合わないんですよ。誰かお願いします。 ちなみに回答は y=(C^2*x^2-1)/2C  (C:積分定数) です。

  • 同次形の微分方程式ついて(「解析学序説(上)」 )

    よろしくお願いいたします。 【記号の説明】 定数 c については、c^(-λ) は「c のマイナスλ乗」を、 変数 x、y, u については 1 y^(n)などは y のn階微分を、 2 x^《n》はxのn乗を、 それぞれ、あらわします。 同書からの引用部分は『・・・』で示してあります。 「容易に階数降下のできる高階常微分方程式」という節の中に「同次形(の常微分方程式)」の項目があります。 『(λを定数として)、 x,y について同次形 (*) c^(-λ)F(cx,cy,y',c^(-1)y",...,c^(1-n)y^(n))= F(x,y,y',...,y^(n)) のときは、c=1/x とおけば、 (**) f(y/x,y',xy",...,x^《n-1》y^(n))=0 の形になる。そこで、y=xu とおくと、y'=xu'+u, y"=xu"+2u',...,一般にライプニッツの公式で y^(k)=xu^(k)+ku^(k-1) で、ゆえに、x^《k-1》y^(k)=x^《k》u^(k)+kx^《k-1》u^(k-1)となり、x についての同次形、すなわち(***)の場合(下記)に帰着された。』 x^《k-1》y^(k)=・・・までは分かるのですが、それから直ちにx についての同次形と結論できるのが、どうしても分かりません。(**)の左辺に、y, y', y", x^《k-1》y^(k), の右辺や、x=1/c を代入して、なんとか(***)が成立することを示そうとしたのですが、うまくいきませんでした。 なお、x についての同次形というのは (***)c^(-λ)F(cx,y,c^(-1)y',...,c^(-n)y^(n))= F(x,y,y',...,y^(n)) が成り立つことを言います。 どうぞよろしくお願いいたします。

  • 微分方程式

    微分方程式は問題を解くやり方が異なると答えも若干ことなるのでしょうか? たとえば x^2*y'+y^2=0・・(1) y'=-y^2/x^2 z=y^2/x^2 ・ ・ としていけば y=cx/(x-c) となりますが (1)から  dy/y^2=-dx/x^2 ・ ・ y=cx/(x-c) また(1)から完全微分方程式とみなして x^2y+xy^2=c としてもいいのでしょうか? もうひとつ (x+1)y'=x+2y+3 という問いは y’-2y/(x+1)=(x+3)/(x+1) として一階線形微分方程式のように解くと y=(1/(x+1)^2)(x^4/4+3x^2/2+x+log(x+2)+c) とならないでしょうか?