• ベストアンサー

直線電流の周りの電場

基本的なことである気がしますが、調べても考えても分からないので質問させていただきます。 直線電流のまわりの磁場を求める問題は、アンペールの法則を使う例題としてよくありますよね。では、直線電流のまわりの電場はどうなっているのでしょうか? 導線の中には電荷が存在しますから、それによって導線から放射状に電場があるのでしょうか?それとも電荷が動いている分、電場の形が変わるのでしょうか? マクスウェル方程式を使って考えてみたのですが、自分の力では divE=0 と ∂E/∂t=0 ということしか分かりませんでした。 どうかよろしくお願いします!!

質問者が選んだベストアンサー

  • ベストアンサー
  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.1

電場は、電流が流れていないときと同じです。

関連するQ&A

  • 半無限長の直線電流が作る電場

    電流Iが無限遠方からある点Oに向かって流れ込み、時間とともにOに電荷が溜まっていく場合、その空間の電場はどのようになるのでしょうか? 無限長の直線電流であれば、馴染みがあるのでわかるのですが・・・ 電場の向きがわかれば、変位電流を考慮したアンペール・マクスウェルの法則の積分形によって、ある積分面をとることで磁場も計算出来ますが、よくわかりません。 ご教授下さい。

  • 直線電流の周りの磁場の強さに2πをつけた理由

    直線電流の周りの磁場の強さに2πをつけた理由 直線電流の周りにできる磁場の強さはH=I/2πrとなっています。一方円電流の 中心の磁場の強さはH'=I/2rです。 アンペールは何故Hの方に2πをつけたのでしょうか。H=I/rと定義すればH'=πI/r となり、別に問題ないはずです。仮にこのように定義されていたとしても、ビオサ バールの法則の式は、係数部分が少し変わるだけで、ビオサバールの法則自体 に矛盾が生じるわけではないですよね。 アンペールがHの方に2πをつけた理由はそれなりにメリットがあるからだろうと 思いますが、そのメリットは何でしょうか。 また、「1[Wb]の磁極をI(アイ)[A]の直線電流からr離して1周させたとき、磁極が 磁場に逆らってする仕事がI(アイ)[J]である。これをアンペールの法則という・・・」 のような記述が参考書に書いてありますが、これって本当に法則ですか?磁場 の強さを決める根本となる定義だと思うのですが・・・ 高校物理を普通に勉強していたらみんなここで「ん?」と思うところだと思うのです が、教科書にも参考書にもこれに関する記述が見つかりません。係数なんて大した 問題ではないかもしれませんが、私にはとても困る問題です。 以上よろしくお願いいたします。

  • 直線導線電荷の電場

    断面の半径がaの無限に長い直線導線に、単位長さあたりλの電荷があって、中心からrはなれたところの電場を求めろ・・・ ただし、r<aの場合も考えること。 という、よくある問題なのですが、少々、「こういう考えでいいんだよね?」という感じで疑問がわいたのですが、確信を持ちたいので質問させていただきます。 こういう類の問題ではよく、円筒だったり、「一様に分布している」だったり、電荷の断面上の分布状態に明確な表現があったりすると思います。 問題のように、半径aの直線導線に単位長さあたり電荷λ としか断られていない場合、導線は「導体」なのですから(今回の問題では電流が流れてるとかそういう状況でもないですし)、電荷は導線表面のみに分布していると解釈して、そのため、導線内部(r<a)では電場はゼロで等電位。ということでいいんですよね? お暇があれば、回答いただければと思います。 よろしくお願いいたします。

  • 等速直線運動する電子は電磁波をつくるの?

    電子が加速度運動をすると 電磁波(シンクロトロン放射や制動放射など)を放出すると 講義で習いました。 しかし等速直線運動する電子も 電磁波を放出するのではないでしょうか? マクスウェル方程式(ファラデーの法則)は 電場(磁場)の時間変化は回転する磁場(電場)を つくり、この連鎖が電磁波として伝播するんですよね? 真空中を等速直線運動する電子は、 軌道の周辺に電場の変化をつくるのではないのでしょうか? 講義中は馬鹿にされそうで質問できなかったので よろしくお願いします。 参考になる書籍も教えていただければ幸いです。

  • マクスウェルの方程式について

     マクスウェルの方程式に「電流(電流密度)」というものが出てくるかと思います。  つまり、マクスウェルの方程式は、「電流」を一つの要素(他の要素は、電荷、電場、磁場など)として記述されているかと思います。  ところで、電流は、導体内の+電荷に対する-電荷の移動によるものかと思います。  従って、「電流が一定」「電流が時間的に変化しない」としても、-電荷が+とすれ違う(+電荷に近づいたたり遠ざかったりする)ことによって、あるいは、-電荷同士が近づいたり遠ざかったりすることによって、非常に短い時間、非常に狭い場所でみると、電場が変化し、その結果・・・という疑問があります。  そこで、「導体内での個々の電荷の挙動」に基いたマクスウェルの方程式の記述や解説、「導体内での個々の電荷の挙動」とマクスウェルの方程式との関連などについて知りたいのですが・・・。  ご存知の方がおられましたら、文献等だけでも、教えていただけると、ありがたいです。  よろしく、おねがいします。

  • 円形電流の作る磁界はアンペールの法則では導けないのでしょうか?

    質問です。 円形電流の作る磁界はアンペールの法則では導けないのでしょうか? 直線の導線、ソレノイドは参考書ではアンペールの法則から磁界が導かれていましたが、円形電流はビオ・サバールの法則で求めてありました。お手数ですが、よろしくお願いします。

  • 電場と磁場

    真空中の静電場、静磁場(磁束密度)におけるガウスの法則が表している物理的意味を電場と磁場(磁束密度)の起源にも触れて説明してください。 また、静電場についての周回積分と静磁場についての周回積分(アンペールの法則)は 物理的に何を表していますか? 両者の違いも含めて簡潔に説明してください。

  • 二つの導線に走る電流が作る磁場

    こんにちは、続けての質問となり申し訳ないのですが、どうか宜しくお願いします。 図の問題に出会いました。 二つの導線があります。ひとつは通常の一本導線で(導線1)、もうひとつは導線1を囲むような形状の導線2です。おそらく同軸ケーブルと呼ばれる導線のことではないかと思います。問題は、この二つの導線の間に位置する点での磁場の強さ、方向を求めるというものです。 模範解答では、導線2での電流I2は考慮に入れず、導線1での電流I1だけを使って、アンペールの法則から磁場を求めています。 なぜ、導線2の電流は考慮に入れなくても良いのでしょうか。 導線2の構造上な対称性から、導線2からの正味の磁場はゼロとなりそうですが、それを証明する計算式を立てられずにおります。導線1の中心を原点として、P (X, Y)とおいて、導線2の極小部分が作り出すPでの磁場dBをビオ・サバールの法則から求め、これを積分するという式になりそうなのですが、この積分式をどう立てて良いのか分からずにおります。積分式の立て方、また他の解法の可能性も含めて、どうかご教示頂けると幸いです。よろしくお願いします。

  • 電場がよくわかりません・・・

    点電荷に関する電場は解けるようになったのですが、以下に示す問題が理解できません。クーロンの法則やガウスの法則の適応の仕方が間違っているのか、合いません。解き方のポイントなど、おしえてください。 1、長い直線状に線密度zで電荷が分布している。このとき直線からrはなれた点に生じる電場。 2、球の表面に合計qの電荷が分布している。 この場合球の内部(中心からrはなれている)の場所の電場。

  • 電流の周りに電磁場が発生する理由とエネルギー保存

    導線に時間変化する電場を掛けると電流のほかに電場と磁場が周囲に発生します。これだと電場を掛けると電流のエネルギー(電力量)だけでなく電磁場のエネルギーも生まれてるように見えてしまいます。 また図のように回路Aに電場を掛けて電流を流すと、回路Bにも電流が流れると説明がありました。回路Aに電流を流して、さらに回路Bでも電流が流れたらエネルギー保存則に反しているように思えるのですがどのようにエネルギー収支が行われてるのですか?ジュール熱のように導線中を電流が流れる過程で、"何かしら"が原因のエネルギー損失分が双極子放射と同様で電磁波という形で散逸してるようにも考えましたがやっぱり釈然としません。 電場を印加すると電流を流すだけでなく電場・磁場も発生させ、近傍の導体に誘導電流も流したらエネルギー保存に反しているように思えるのですが、電磁場の発生と電磁誘導についてどのように考えればよいのでしょうか。 どなたかご教授お願い致します