• ベストアンサー

点(X0,Y0),(X1,Y1),…,(Xn,Yn)を通るn次関数がただ一つであることの証明

n次関数の証明なのですが、 「因数定理を用いて、点(X0,Y0),(X1,Y1),…,(Xn,Yn)を通るn次関数がただ一つであることを証明せよ」という問題です。 ラグランジュの補間公式の証明みたいなのですが、ただ一つであることを証明する方法がわからなくて困っています。 具体的な考え方でもよいので、アドバイスいて頂けると嬉しいです。 よろしくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
noname#221368
noname#221368
回答No.1

 因数定理とどうつながるか、考えた事はないですが、実用的に考えれば、   y=Σa(j)*x^(n-j) において(j=0~n)、(x(i),y(i))を代入すれば(i=0~n)、   Σa(j)*x(i)^(n-j)=y(i)   i,j=0~n と、a(j)に関する連立方程式になるので、解が存在すれば一意です。  解の存在は「因数定理から」という事になるんでしょうかね?。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

noname#221368
noname#221368
回答No.2

 #1です。一つ思い出した事があります。連立方程式、   Σa(j)*x(i)^(n-j)=y(i)   i,j=0~n を解く際には、本質的に係数行列、  (b(ij))=(x(i)^(n-j)) のdetを計算する事になりますが、  det(b(ij))=±Π(x(k)-x(L))  ただしk<L になります(ファンベルモンドの行列式)。  detの右辺の形から、因数定理につながらないでしょうか?。

monster178
質問者

お礼

ありがとうございます! n+1個の方程式を解くことで、係数が一意に決まるということですよね。 因数定理は使わなくても良いみたいなのですが、わざわざ解答を絞り出して頂いて、大変嬉しいです。本当にありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 論理回路

    2n変数論理関数 fn(x1,x2,...,xn,y1,y2,...,yn)={ 1 N(x1,x2,...,xn)>N(y1,y2,...,yn)の時                 0 その以外 について、以下の問に答えよ。ここで、Nは入力を2進数とみなしたときの数を値として持つ関数であり、N(x1,x2,...,xn)=Σ(i=1~n)xi2^n-iと表すことができる。 問 任意のn>=2に対して     fn(x1,x2,...,xn,y1,y2,...,yn)= x1・y1(bar) + (x1+y1(bar))・fn-1(x2,...,xn,y2,...yn) が成り立つことを示せ。ただし、(bar)が論理否定、・が論理積、+は論理和を表す という問なのですが、どのように証明をすればよいのでしょうか? お願いします。

  • y1,y2,…ym:一次独立でV=span{x1,x2,…,xn}ならm≦n

    [問]体F上の線形空間V∋y1,y2,…ym:一次独立. V=span{x1,x2,…,xn} (x1,x2,…,xn∈V) とする時(つまり、x1,x2,…,xnはVのspan set)、 m≦nとなる事を示せ。 [証] dimV=Lと置くと、L≧mで (i) L=mの時 V=span{y1,y2,…,ym} 且つ y1,y2,…ym:一次独立 が成立せねばならない(∵dimの定義「線形空間を張る一次独立なベクトルの最大個数」)。 ここでm>nと否定して矛盾を引き出してみる。 その場合,先ず、x1,x2,…xn:一次従属でなければならない(∵dimの定義)。 そこから先に進めません。どう書けばいいのでしょうか?

  • max(X1,X2,X3......Xn)の確率密度関数はなんですか。

    max(X1,X2,X3......Xn)の確率密度関数はなんですか。 min(X1,X2,X3......Xn)の確率密度関数はなんですか。

  • 線形補間

    線形補間での求め方 問題文: 1.数値を読み込む 2.xを読み込む 3.x<x1 または x>xnならエラー 3.x1<x<i+1 となるiを見つける 4.補間公式でyを求める 5.結果をプリントする #include<stdio.h> float hokan(void); int xn[] = {0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75}; double yn[] = {0.000,0.087,0.173,0.258,0.342,0.422,0.500,0.573, 0.624,0.707,0.766,0.819,0.866,0.906,0.939,0.965}; int x=5; void main() { printf("y = %lf\n", hokan()); } float hokan(void) { int i; double y; if(x <0|| 75<= x){ printf("エラーです\n"); } else{ for(i=0; xn[i] < x; i++) y = (yn[i+1] - yn[i]) * (x - xn[i]) / (xn[i+1] - xn[i]) + yn[i]; return y; } } 数表を最初にxnとynで表記しています。 このプログラムで線形補間が行われてないそうなのですが・・ 何か誤りがある様でしたらどなたか教えてください。

  • {x1,x2,…,xn}は正規直交系でxがspan{x1,x2,…,xn}に無いならxは直交する?

    [Q] Given a orthonormal set,O:{x1,x2,…,xn},and x is not in spanO,show that x is orthonormal to every vector in O. という定理についてです。 仮定は<xi,xj>=δij (i,j∈{1,2,…,n}) xがspanOの中に無いというのだからx,x1,x2,…,xnは一次独立ですよね。 一次独立だからといってxがOのどの元とも直交するとは言えませんよね。 背理法で∃i∈{1,2,…,n};<x,xi>≠0だと仮定してみると ∥x∥∥xi∥cos∠(x,xi)≠0と書け、、、 からどうやってxがOのどの元とも直交である事を示せばいいのでしょうか?

  • 点がx軸上に来ない

    ある問題で、「点Pn(Xn,Yn)がx軸上に来ないことを示せ」とあり、点Pnのy座標(=Yn)が5の倍数でないことまで判明しています。 しかし、その後行き詰まり、解答を見たところ… 「Ynは5の倍数でない。すなわち、点Pのy座標は0となることはないから、点Pはx軸上に来ない(終)」 となっていました。この「すなわち」の言いかえがどうも分かりません。 どなたか教えてください。

  • 数値解析の補間多項式

    (1)nを1以上の整数とし,X0,X1,,,Xnを相異なるn+1個の標本点とする。R上の関数f,g,hにおいて、gはfをX0,X1,,,Xn-1で補間し(つまり,g(Xi)=f(Xi),i=0,1,2,,,,n-1となる)、hはfをX1,,,Xnで補間するとき、関数    g(X)+(X0ーX)/(Xn-X0)×{g(X)ーh(X)} は、fをX0,X1,,,Xnで補間することを示したのですが質問があります。 まず補間するということはどんな意味を持っているのでしょうか?そしてこの問題の但し書きとしてf,g,hは多項式とは限らないとあったのですがではどう考えたらよいのでしょうか?? 最終的にどのように証明していけばよいかアドバイスお願いします★

  • 関数f(x)が区間Iで下に凸である事を利用した証明

    関数f(x)が区間Iで下に凸である時、Iの任意のn個の点x1,x2,・・・xnに対して、不等式f((x1+x2+・・・+xn)/n)≦(f(x1)+f(x2)+・・・+f(xn))/nが成り立つ事を示せ、という問題で、下に凸である事の定義x1<x<x2で(f(x)-f(x1))/(x-x1)≦(f(x2)-f(x))/(x2-x)をどうやってつかってやれば証明がうまく出来るのでしょうか?ヒントをください。お願いします。

  • 論理関数の証明の問題です。

    (1) F(x1,x2,...,xn)を任意の論理関数とし F(x1,x2,...,xn) = x1'・F(0,x2,...,xn) + x1・F(1,x2,...,xn) を証明せよ。(' は反転の意) (2) 上式を踏まえて次式を証明せよ。 F(x1,x2,...,xn) = (x1' + F(1,x2,...,xn)) ・ (x1 + F(0,x2,...,xn)) 以上のような問題です。 どなたかお教え頂けないでしょうか。 よろしくお願いします。

  • 多角形の内部かどうか判定する方法

    2次元座標系にあるn個の点を順に接続して多角形を作ります。 n個の点は(x1,y1)-(x2,y2)-…-(xn,yn)とします。 (xn,yn)と(x1,y1)を最後につないで閉じた多角形とします。 このとき点(a,b)が多角形の内部にあるかどうかを判定するにはどのようにしたら良いでしょうか? 辺同士が交わるような点の配置は無いとします。 よろしくお願いします。