• ベストアンサー

代数 証明

「(a,b)=dに対して、a|c,b|c⇒ab/d|cである(a,b,c,dは整数)」 この証明を教えて下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

ax + by = d なる x, y をとって両辺に c を掛けると acx + bcy = cd a | c より ab | bcy b | c より ab | acx よって ab | (acx + bcy) = cd

mi0123
質問者

お礼

ありがとうございます。 大変参考になりました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • zk43
  • ベストアンサー率53% (253/470)
回答No.1

cはa,bの公倍数。 ab/dはa,bの最小公倍数。 任意の公倍数は、最小公倍数の倍数。

mi0123
質問者

お礼

ありがとうございます。 理解できました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 代数入門について

    (1)a,b,c,dを(a,b)=1,(c,d)=1を満たす正の整数とする。このとき、a/b+d/cが整数であれば、b=cであることを示す。(2)a,b,cを整数とするとき、(a,b)=1ならば、(ac,b)=(c,b)を示す。(3)a,bを整数とするとき、(a,b)=dとおけば、ある整数a',b'があってa=a'd,b=b'd,(a',b')=1と表せる。このとき、[a,b]=a'b'd=ab'=a'bであることを示す。この(1)~(3)の問題は証明できるのでしょうか??

  • 不等式の証明

    不等式の証明の問題で、 絶対値が1より小さい4つの実数a,b,c,dに対して、次の不等式が成り立つことを示せ。というものがありました。(1),(2)と2問あって (1)はa+b<1+abの証明でした。 これは(右辺)-(左辺)をして(a-1)(b-1)>0となり、証明できました。 (2)は(1)を利用して示せ。となっており (2)はa+b+c+d<3+abcdの証明でした。 (1)よりa+b<1+abなのでc+d<1+cd 辺々加えてa+b+c+d<2+ab+cd ここまではできたのですが、ここからどうやって右辺を3+abcdに するのかどうしてもわかりません。 答えにはa+b+c+d<2+ab+cd            <2+(1+abcd)            <3+abcd と書かれていたのですがどうしても    <2+ab+cd          ↓    <2+(1+abcd) が分かりません。教えてください!            

  • 合同式の証明について

    自分の使っている参考書に書かれている合同式の証明で a≡c (mod m) b≡d (mod m)より a-c=mp b-d=mq (p,qは整数)とおくことが出来る。 よって (a+b)-(c+d)=(a-c)+(b-d)=mp+mq=m(p+q) (a-b)-(c-d)=(a-c)-(b-d)=mp-mq=m(p-q) ab-cd=(c+mp)(d+mq)-cd=m(cq+pd+mpq) ゆえに(a+b)-(c+d),(a-b)-(c-d),ab-cdはmの倍数であるから a+b≡c+d(mod m) a-b≡c-d(mod m) ab≡cd(mod m) は成り立つ。 と書かれているのですが、全体的によく理解が出来ません。 まず なぜ a≡c (mod m) b≡d (mod m) であれば a-c=mp b-d=mq (p,qは整数)と、おくことが出来るのかということと ab-cdからどのような計算をすると(c+mp)(d+mq)-cd このようになるのかもわかりません。 数学はあまり得意ではないので中学生レベルの学力でも理解できるように 説明していただけると有り難いです。

  • ブール代数の簡単化の問題についてです。

    学校の課題でブール代数の簡単化についての問題が出ました。 自分でも解いてみたのですが、自信がなかったり、わからないところがあります。 間違った解き方をしている部分、回答があっていない部分など、ご教授ください。 [1] a'b + a'c' + abc = a'(b + c') + abc [2] ab' + ab + a'b' = a(b' + b) + a'b' = a + a'b' [3] ab + ac + ab'c' = ab + a(c + b'c') = ab + a(c + b') = ab + ac + ab' = a(b + b') + ac = a + ac = a [4] ab+ c + abc + bc' = (ab + abc) + (c + bc') = ab + c + b = (ab + b) + c = b + c [5] ab + abc + ab' + ab'c' = (ab + abc) + (ab' + ab'c') = ab + ab' = a [6] a'b'c' + a'bc' + abc' + ab'c' = a'c'(b' + b) + ac'(b + b') = c'(a' + a) = c' [7] abc + ab'c + abc' + ab'c' + a'b'c' = ab(c + c') + ab'c + c'b'(a + a') = ab + ab'c + c'b' = ab + b'(ac + c') = ab + b'(a + c') = ab + ab' + b'c' = a(b + b') + b'c' = a + b'c' [8] a'bc'd + abcd' + abcd + a'bcd' + a'bcd = a'bc'd + abc(d' + d) + a'bc(d' + d) = a'bc'd + bc(a + a') = a'bc'd + bc [9] abd + ab'd' + acd + ac' = a(bd + b'd') + a(cd + c') = a(1) + a(d + c') = a [10] (a + bc)(a + cd) = a + bc * cd = a + bcd よろしくお願いします。

  • 不等式の証明

    次の不等式を証明せよ。 また、符号が成り立つのはどのようなときか。 (1)|ab+cd|≦√(a^2+c^2)√(b^2+d^2) (2)√(a+b)^2+(c+d)^2≦√(a^2+c^2)+√(b^2+d^2)

  • 証明です。教えてください。

    整数a,bについて、a+bが偶数ならばab+bも偶数になる証明の仕方を教えてください。

  • 6の倍数であることを証明

    a、bを1より大きい整数を表すものとするとき、a^3b-ab^3は > >6の倍数であることを証明せよ 展開の仕方としては    ab{(a+1)(a-1)-(b+1)(b-1)}まではよいでしょうか? ここから先にどう進めばいいかどなたか教えてください。

  • 数A 証明

    こんばんわ。 数Aの証明のところがさっぱりなのでアドバイスお願いします。 △ABCについて、 AC>ABなら∠B>∠C ※AC>ABより  AC上にAB=ADとなる点DをとりBとDと取る。 どうかお願いしますm(_)m

  • 不等式の証明について

    |a|<1、|b|<1、|c|<1のとき、ab+1>a+bを用いてabc+2>a+b+cを証明する問題で、 |a|<1、|b|<1より、|ab|<1 |ab|<1、|c|<1より、ab+1>a+bを利用して、 (ab)c+1>ab+c・・・となるのですが、 どうしてcがでてくるのか、どうして左辺はかけて右辺は 足すのかわかりません。どうぞよろしくおねがいします。

  • 不等式の証明

    問) a>0,b>0,c>0,d>0のとき、(a+b)(1/c+1/d)≧4√ab/cdが成り立つことを証明せよ 解答は (a+b)(1/c+1/d)=a+b/c + a+b/d a>0,b>0,c>0,d>0よりa+b/c>0,a+b/d>0だから 相加平均、相乗平均の関係を使うと a+b/c + a+b/d≧2√a+b/c×a+b/d ここまで書けました(笑 この先どう考えたらいいんでしょうか??