• 締切済み

位相幾何学の問題です。同相を示す問題です。

1) 任意の2つの円は同相であることを示せ。 2) 円弧は線分と同相であることを示せ。 3) 多角形は円と同相であることを示せ。 以上3題なんですけど、円をどのように記したらいいのか?っていう最初の一歩から分かりません。ぜひよろしくお願いします。

みんなの回答

  • N64
  • ベストアンサー率25% (160/622)
回答No.1

ここは、数学のカテゴリではないので、直感的ですが。曲げたり、のばしたりすれば、ぴったり一致するので、、同相でしょう。曲げたり伸ばしたりしても、相は変わらない、というのが、位相幾何学では、ないでしょうか?

関連するQ&A

  • 位相の問題について

    『R^mをm次元ユークリッド空間とし、S^(m-1)でm-1次元球面とする。このとき、任意の点p∈R^mに対し、R^m\{p}とS^(m-1)は同相であることを示せ。』 という問題なのですが、なかなか同相写像を見つけることができません。どのようにして写像を定義すればよいのでしょうか?ご教授ください。

  • 幾何学の問題でしょうか?

    ある部品メーカさんから受けた部品形状の説明で次のようなものがあります。 部品の形状を簡単に説明するとこうなります。(^は2乗) XY座標上、x^2+y^2=82^2の円弧でY軸の正の部分を中心に左右に30度ずつ振り分けたところが端部のものがあります。 同様にx^2+Y^2=58^2の円弧でY軸の負の部分を30度ずつ振り分けたところに端部があります。 これら2つの円弧の端部同士を(Xが正の部分同士、Yの正の部分同士)つないだ曲線Aを求めたいのです。この他の条件として、先の円の端部からA曲線上すべての点に、半径42の円が外接するということがあります。 説明がうまくなく恐縮ですが、先の2つの円弧と曲線Aで作られる図形でどこでも特定円が外接できる形状のものを特定、作図したいです。 部品屋さんは、2つの円をサインカーブでつないでできると言っています。 1.サインカーブという表現が適切なのか? 2.こういった曲線は存在しうるのか? 3.その作図法、若しくは表現できる式は? 20年以上前の大学受験時は、関係するような問題を考えていたかもしれませんが現在は???です。 説明お願いできますか。

  • 幾何の問題で困ってます これって平行ですよね?

    幾何の問題で困ってます これって平行ですよね? 添付図において R21+R12=R11+R22 A11,A12,A21,A22の何れもが同一平面上に存在し、且何れともつ接しない A11とA12の中心点は共にO1 A21とA22の中心点は共にO2 R21,R12,R11,R22の全ては常に0以上 線分 S1及びS1'は相対する円の接線である と言った条件が成立する時、 円 A11の半径R11が任意に動的に変化して 例えば円 A12になって 線分S1がS1’などに移動した場合でも これって常に平行ですよね? もし平行ならば、 それをどう言えば幾何的に証明できますか? 御手数ですが御指南御願いします。

  • 幾何の問題で困ってます これって平行ですよね?

    幾何の問題で困ってます これって平行ですよね? 添付図において R21+R12=R11+R22 A11,A12,A21,A22の何れもが同一平面上に存在し、且何れともつ接しない A11とA12の中心点は共にO1 A21とA22の中心点は共にO2 R21,R12,R11,R22の全ては常に0以上 線分 S1及びS1'は相対する円の接線である と言った条件が成立する時、 円 A11の半径R11が任意に動的に変化して 例えば円 A12になって 線分S1がS1’などに移動した場合でも これって常に平行ですよね? もし平行ならば、 それをどう言えば幾何的に証明できますか? 御手数ですが御指南御願いします。

  • 幾何の問題で困ってます これって平行ですよね?

    幾何の問題で困ってます これって平行ですよね? 添付図において R21+R12=R11+R22 A11,A12,A21,A22の何れもが同一平面上に存在し、且何れともつ接しない A11とA12の中心点は共にO1 A21とA22の中心点は共にO2 R21,R12,R11,R22の全ては常に0以上 線分 S1及びS1'は相対する円の接線である と言った条件が成立する時、 円 A11の半径R11が任意に動的に変化して 例えば円 A12になって 線分S1がS1’などに移動した場合でも これって常に平行ですよね? もし平行ならば、 それをどう言えば幾何的に証明できますか? 御手数ですが御指南御願いします。

  • 正則同相な関数について

    Gauss平面C上の 任意の正則同相 f:C→C は一次式で表わされることを示せ。 です。 何を利用すればよいかもわかりません。 よろしくお願いします。

  • 楕円と円が微分同相であること

    円:S^1={(x,y)∈R^2 | x^2+y^2=1} 楕円:E={(x,y)∈R^2 | (x/a)^2+(y/b)^2=1} に対して,原点を通る任意の半直線はE,S^1のそれぞれ一点で交わる. それらの点を p∈E,q∈S^1 とするとき,q を p に写すことで,S^1 から E への写像 Π が定まる. このとき,Πが微分同相写像であることを示せ. といった問題について教えてください. 微分同相写像であることを示すには,  Π:同相写像 かつ Π および Π^(-1) がC^∞写像 を示せばいいと思いますが,そもそも Π がどういった写像になるのかが記述できなくて困っています. 半直線と円の交点から,楕円との交点へと写す写像はどう書けるのでしょうか? よろしくお願いします.

  • 位相に関する問題です

    位相の問題ですがお願いします (1)R^nの部分集合Xの連結性の定義を述べ、中間値の定理がX上で成り立つことを示せ。 (2)数直線Rが連結であるのを仮定して次を示せ。  1、単位円S1は連結 2、平面R^2は連結 (3)開区間はすべて同相であることを示せ

  • 微分同相写像の列

    Mをコンパクト微分可能多様体とします。 {f[n]}をMの微分同相写像の写像列とします。 f[n]がn→∞の極限で、滑らかな写像fに一様収束しているとき、fは微分同相写像ということはできますか。 ここで一様収束とは、Mのリーマン計量から距離dを定義して、任意のε>0に対して、ある自然数Nが存在し、任意のx∈Mに対して、n>N⇒d(f[n](x)、f(x))<ε、が成り立つことを言います。

  • トーラスは R/Z × R/Z と同相。ではクラインの壷は?

    直線は実数 R と同相です。 円周は実射影直線 RP(1) = { R^2 - {(0, 0)} } / ~ (比が同じものを同一視) と同相です。 また、円周は実数に無限遠点を付け加えた R∪{∞} とも同相です。 また、円周は実数体 R を有理整数環 Z で割った剰余環 R / Z とも同相です。 線分は、実数に無限遠点を2個付け加えた R∪{+∞, -∞} とも同相です。 平面は実数の組 R^2 や複素数 C と同相です。 球面は複素射影直線 CP(1) = { C^2 - {(0, 0)} } / ~ (比が同じものを同一視) と同相です。 また、球面は複素数に無限遠点を付け加えた C∪{∞} とも同相です。 実射影平面は RP(2) = { R^3 - {(0, 0, 0)} } / ~ (比が同じものを同一視) と同相です。 トーラスは R/Z × R/Z と同相です。 では、円板(境界を含む)はどのような代数的存在と同相と考えることができるのでしょうか? クラインの壷はどのような代数的存在と同相と考えることができるのでしょうか? その他、上記のような幾何学的存在と代数的存在の関係に、なにか別のいいアイデアがありましたらいただけないでしょうか?