• 締切済み

正四面体……

正四面体の頂点から垂線をおろすと底面の重心に到達すると思うのですが、この点(重心にあたる点)は他に何か意味を成しますか? 正四面体の高さ・体積を求めるのに関係があるようなのですが……。 わかる方がいましたら教えてください。

  • jin00
  • お礼率71% (15/21)

みんなの回答

  • kahlua_
  • ベストアンサー率100% (4/4)
回答No.2

面が正三角形なので重心は内心外心垂心といろんな点とかぶりますが 特に正四面体の時に現れる意味のある点でしたら 「中にぴったりの球を入れたときに接する点」 とかでしょうか。 これを使って正四面体の体積を求めることができます 球の半径rとして V=(一面の面積xr/3)x4 のような感じです。

回答No.1

頂点と重心との距離が高さに当たります。 体積は、(底面の面積)×(高さ)÷3なので関係があるといえばあると言えるかもしれません。

関連するQ&A

  • 正四面体と正四角錐について

    正四面体は4つの正三角形から成り立っている図形で、正四角錐は底面が正三角形で頂点からの垂線が底面の重心を通り、高さは決まっていない図形と考えてよろしいのでしょうか。 また、これは正n面体と正n角錐にもいえることでしょうか。 また、おそらく「正四面体≠正四角錐」だと思うのですが、これに「正」が除かれると、「四面体=三角錐」のような関係になると考えて良いのでしょうか。 よろしくお願いします。

  • 正四面体

    「正四面体の頂点から底面に垂線を下ろすと、その垂線は底面である正三角形の重心を通る」は証明できるのですが、「正四面体の一つの面をSとすると、面Sの重心と面Sに対する頂点を通る直線は、面Sに垂直に交わる」はどうやったら証明できるのでしょうか。 教えてください。

  • 正四面体の問題です

    正四面体と外接球の問題です。 正四面体の頂点から、底面の正三角形に向けて垂線を下ろした時、 この垂線が、外接球の中心を通るのは何故ですか? よろしくお願いします。

  • 球に内接する正四面体

    正四面体の頂点から底面の三角形に引いた垂線と底面の交点は、底面の三角形の外接円の中心であることはわかるんですが、この垂線が球の中心を通っていることは証明可能ですか??

  • 正四面体とその外接円

     正四面体の外接円や内接円の中心はどうして四面体の頂点から 底面に下ろした垂線上にあるって分かるのですか?

  • 正四角錐の体積を求める問題

    図のような正四角錐PABCDにおいて、頂点Pから正方形ABCDに下ろした垂線をPHとする。PA=a、∠APH=θであるとき、正四角錐の体積を求めよ。 という問題なんですが、PHの求め方が分りません(><)どなたか解説していただけると助かりますm(_ _)m

  • √内の計算、正四面体体積比。

    こんにちは。 半径1の球Pに正四面体Qが内接している。このとき次の問いに答えよ。 ただし正四面体の頂点から底面の三角形に引いた垂線と底面の交点は、底面の三角形の外接円の中心であることは証明無しで用いてよい。 (1)正四面体Qの1辺の長さを求めよ (2)球Pと正四面体Qの体積比を求めよ。 この問題でAH=√AB^2-BH^2=√a^2-a^2/3=√6/3a に何故なるのかわかりません。 これ以下はわかります。 それと、証明無しで用いてよいと書いていない場合もありますか? その場合は証明しないといけませんよね。どう証明するのですか? 数式を並べるだけで日本語での説明がうまく書けないのですがこれは解答などと自分の解答を見比べ覚えていくしかありませんか? よろしくお願いします。

  • 正四面体について垂線と中線が交わることの証明

    正四面体OABCの頂点Oから底面ABCに引いた垂線の足をHとし、辺BCの中点をMとするとき、点Hが中線AM上にあることはどうやって証明したらよいのでしょうか。 どなたかご教授願います。

  • 正四面体の体積

    次の正四面体の体積を求めなさい。   という問題なのですが多分この頂点から垂直におろした高さが必要だと 思うのですが底辺のどこに垂線が着地するのかわかりません。 三平方の定理で求められるらしいのですがどなたか具体的な方法を教えていただけたら助かります。

  • 正四面体の内接球

    正四面体の内接球の中心は、外接球の中心でもある。 これが証明できません。どなたかベクトルとか使わない証明をご存知の方、教えてください。 逆の命題、「正四面体の外接球の中心は内接球の中心でもある」は以下のように示すことができると思います。 正四面体をABCD 外接球の中心をO Oから面ABCに下ろした垂線の「足」をW Oから面ABDに下ろした垂線の足をX Oから面ACDに下ろした垂線の足をY Oから面BCDに下ろした垂線の足をZ 外接球の半径をRとする。 (補題)外接球の中心から各面に下ろした垂線とその面との交点は面の重心である。 外接球であるから、OA=OB=OC=OD=R 面ABCを考える △OWAと△OWBと△OWCで OA=OB=OC (=R 外接球の半径) OW=OW=OW (共通) ∠OWA = ∠OWB = ∠OWC = 90°(垂線だから) 斜辺ともう一つの辺が等しいので △OWA≡△OWB≡△OWC ∴AW=BW=CW Wは正三角形ABCの外心である。 正三角形において、外心と内心と重心は一致するから、Wは重心でもある。 他の3つの面も同様に考えられるから、X,Y,Zはそれぞれ重心となる。 (本題) △OWAと△OYAを考えて、 AW=AY (合同な正三角形の重心と頂点との距離) AO=AO (共通) ∠OWA = ∠OYA = 90°(垂線だから) ∴△OWA≡△OYA ∴OW=OY 同様に、OW=OX=OY=OZ ゆえに、Oは内接球の中心である。 このとき、Oと各面との接点はW,X,Y,Zである。 逆は難しくてどうしてもわかりません。内接円の類推で、内接球の中心が二等分「面」上にあることを使うのだと思うのですが。 よろしくお願いします。