パラメーターr、θ関数の面積を考える

このQ&Aのポイント
  • パラメータr、θ(r>0、0≦θ≦π/4)に対してxの関数f(x)=rsin(x+θ)を考える。
  • 質問文章では、パラメータr、θが等式Aを満たしているとき、rをθの関数として表せる方法について尋ねています。
  • また、図形Dの面積Sを求める方法についても質問しています。計算において∫をそのまま外すことができるかについて疑問を持っているようです。
回答を見る
  • ベストアンサー

パラメーターr、θ 関数 面積

パラメータr、θ(r>0、0≦θ≦π/4)に対してxの関数f(x)=rsin(x+θ)を考える。 (1)r、θが等式 ∫(0→2π)(sinx-f(x))^2 dx=∫(0→2π)(sinx)^2dx・・・A を満たしているとき、rをθの関数として表せ。 (2)Aを満たしながら、r、θを動かしたとき、0≦x≦πにおけるy=f(x)のグラフはxy平面上を動く。これらのグラフが動く範囲Dを求め、図示せよ。 (3)図形Dの面積Sを求めよ。 この問題を解いているのですが、(1)では∫をそのままはずして計算できるのでしょうか?そのようにして計算してみたところxが消えなかったので間違っているのではないかと思っています。 難しくて困ってます。回答よろしくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • rtz
  • ベストアンサー率48% (97/201)
回答No.2

No.1の者です。 (2) ではr=cosθが正解である前提で進めます。 これをf(x)に代入すれば、f(x)=cosθ・sin(x+θ)となります。  f(x)=cosθ・sin(x+θ)=1/2{sin(x+2θ)+sinx} ここでxを0<=x<=πの範囲で、仮にある値に固定したとします。 sinxに関しては、 0<=x<=πですから、sinx>=0です。 sin(x+2θ)に関しては、 0<=θ<=π/4より0<=2θ<=π/2ですから、0<=x<=πを考慮して、 0<=x<=π/4で、2θ=0のとき最小値sinx、2θ=π/2-xのとき最大値1 π/4<=x<=π/2で、2θ=π/2のとき最小値sin(x+π/2)=cosx、2θ=π/2-xのとき最大値1 π/2<=x<=πで、2θ=π/2のとき最小値cosx、2θ=0のとき最大値sinx をそれぞれ取ります(分かりにくければ図を描いてください)。 以上より、f(x)=1/2{sin(x+2θ)+sinx}は、 0<=x<=π/4で、最小値sinx、最大値(1+sinx)/2 π/4<=x<=π/2で、最小値(sinx+cosx)/2、最大値(1+sinx)/2 π/2<=x<=πで、最小値(sinx+cosx)/2、最大値sinx と分かるので、あとはこれをy=f(x)としてグラフに表すだけです。 (3) 最大値と最小との差を積分区間に従って積分してやれば面積が出ます。

eiiewo
質問者

お礼

回答ありがとうございました!

その他の回答 (1)

  • rtz
  • ベストアンサー率48% (97/201)
回答No.1

>(1)では∫をそのままはずして計算 被積分関数が等しいときはしてもいいですが、この場合は等しいとは言われていないのでしてはいけません。 例を出すと∫(0→1)xdx=0.5=∫(0→1)(1-x)dxですが、x≠1-xです。 この問題は具体的に左辺、右辺の積分をしてしまいましょう。 左辺の被積分関数は(sinx)^2-2rsinx・sin(x+θ)+r^2・{sin(x+θ)}^2、 右辺の被積分関数は(sinx)^2です。 和積で展開した上で、cos2x=1-2(sinx)^2などを利用して具体的な計算が出来ます。 多少面倒ですが、頑張ってください。

eiiewo
質問者

補足

回答ありがとうございます! 左辺と右辺をそれぞれ計算してイコールで結んだところ r=cosθ  というのが出てきました。 (2)でこのrとθの関係からどのようにしてxyの関係にすればいいのでしょうか?f(x)の式に代入したのですがそのあと何をすればいいのかがよくわからなくなりました。 回答いただければ幸いです

関連するQ&A

  • 円の面積:πr^2の計算。なぜこうなるかがわからないです

    いつもお世話になります。初歩的な質問で申し訳ありませんが、ひとつどうしても分からないので教えてください。 今読んでいる本で、円の面積を計算する方法が書いてある箇所があるのですが、なぜそうなるかがわかりません。 半径rの円:x^2+y^2=r^2があり、第1象限に点P(x,y)がとってあります。 円の面積Sは、S=4∫(0からr)√(r^2-x^2)dxとなる。ここまでは良いのですがわからないのは以下からです。 --------------------------------------------------- ここでx=rcosθとおくと、dx=rsinθdθです。 したがって、x=0のときθ=0、x=rのときθ=π/2です。 さらに、r^2-x^2=r^2-r^2*(sinθ)^2=r^2*(cosθ)^2 よって、√(r^2-x^2)=rcosθ (その後積分の計算で S=4r^2・∫(0からπ/2)(cosθ)^2 dθ とされ、 最終的にはπr^2が導かれています。) --------------------------------------------------- 質問1:1行目でなぜ「dx=rsinθ」なのでしょうか。私は「dx=-rsinθdθ」かと思いました。 質問2:2行目ではなぜ「x=0のときθ=0」なのでしょうか。私は、「x=0のときθ=π/2で、x=rのときθ=0」かと思いました。 質問3:4行目ではなぜ、「√(r^2-x^2)=rcosθ」になるのでしょうか。私は「右辺=rsinθ」だと思いました。 質問4:積分の式もなぜこうなるのかわかりません。冒頭でdx=rsinθと言ってるのに、ここではdx=rcosθを代入してますしなぜですか? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 私が自分なりに解いた方法では、S=4r^2・∫(0からπ/2) (sinθ)^2 dθとなり、πr^2は導けたのですが、上で書きました本の内容の意味がわからず気持ち悪い状態です。 本は青バックスの「πの不思議」p.49~50です。 私の勘違いかも知れかもしれませんがすっきりしないので、お詳しい方ご教示ください。

  • フーリエ変換の質問(?)なのですが

    フーリエ変換の質問(?)なのですが 問題集をといていてよくわからない問題に出会ったので質問いたします。 一問目で ∫[-∞→∞]F*(ω)F(ω)dω = ∫[-∞→∞]f*(x)f(x)dx  の証明 二問目が g(x)= 1 (-a<x<a) = 0 (それ以外)  のフーリエ変換を求める問題  三問目が (1)∫[-∞→∞](sinx/x)dx (2∫[-∞→∞](sinx/x)^2dx (3)∫[-∞→∞](sinx/x)^3dx となっていました。 第一問目のパーシヴァルの等式の証明と第二問目で三問目の(2)の誘導になっていると思ったのですが、 3の(1)と(3)がフーリエ変換と関係しているのかがよくわかりませんでした。 (1)は複素関数のところで見たことがあるのですが・・・ (1)と(3)について詳しいことを教えていただきたいです。宜しくお願いします。

  • 陰関数の第2次導関数の証明方法

    陰関数の第2次導関数の証明のやりかたなのですが、 dy/dx=-f(x)/f(y) ですので、 d^2y/dx^2 は d(dx/dy)/dx = d(-f(x)/f(y))/dx となり、後は f(x)/f(y)を微分するだけなのはわかるのですが、 一般的な微分公式にあてはめた場合、 -f(xx)f(y)×f(yx)f(x)/f(y)^2 と成るはずなのですが、 答えは d^2y/dx^2=-( f(xx)f(y)^2-2f(xy)f(x)f(y)+f(yy)f(x)^2 )/ f(y)^3 となり、途中の計算課程が分かりません。 私は何の認識を誤っているのでしょうか? 詳しく教えてください。よろしくお願いします。

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 数学の図示に関する質問です

    数学の図示の質問です 次の条件(1)(2)をともに満たす2次関数 f(x)=x^2+bx+c を考える (1) c>=0 (2) ∫[0~1] f(x)dx=1 この関数のグラフ y=f(x)が通り得る領域を図示せよ  式を書いていただければグラフは描かなくてもいいです   お願いします!!

  • 微分係数について

    たとえば、関数F(y)=∫(0→√x)e^(xy)sinx^2dx(こういう関数ならなんでもよい)のy=0における微分係数を求める時、「積分と微分の可換性を用いれば簡単に計算できる」というのですがどういうことですか?分かる方教えてください。

  • 三角関数がわかりません。><

    sinX+√3cosX(0=<X<2π)をRsin(X+A)の形にする問題(R>0,-π=<A<π)ですが教科書を見てもよく分かりません…。お手数かけますが、どなたか教えてもらえませんか?

  • パラメータ関数の増減表

    C:x=e^t-e^(-t),y=e^3t+e^(-3t) このとき、xの関数yの増減と凹凸を調べ、曲線Cの概形を描け。 という問題なんですが、dx/dtやdy/dt,d^2y/dt^2などを調べていくと思います。これは問題文に調べよとありますから計算したこととしますが、グラフを描くときに増減表を書くと思います。ここでですが、この場合xやyの導関数は実際調べなくとも明らかに正ですよね?ですから増減表を書くときに t|0 … ∞ x|0 → ∞ y|2 ↑ ∞ というように書いてよいのでしょうか?(y軸対称ですからt≧0で考えています)ここでお聞きしたいのは増減表の中に導関数を取り入れていないことが許されるのかということです。そもそも増減表はx,yの動向をつかむためのものであるから、別に導関数をかかなくてもよいと思うのですが。これは予備校の先生に教わったので間違いではないと思うのですが、果たして採点官に認められるのかと思いまして。例えばx=sin3t,y=cos2t(0≦t≦π/2)というようなパラメータ関数があったとして「このグラフの概形を描け」とだけ問題にあったとしたら、dx/dtなど調べなくても実際にtx平面にx=sin3tのグラフを描けば、どこで増加・減少になるかは一目でわかります。 t|0 … π/6 … π/3 … π/2 x|0 ↑ 1 ↓ 0 ↓ -1 (ちょっと上の増減表ずれてるかもしれませんが、…の下に矢印があると判断してください)という感じです。もし許されるのであれば、このように判断できるものは無駄に導関数など調べなくてもよいということになりますし、かなり手間が省けると思います。 以上のことについてアドバイスお願いいたします。    

  • 関数の極値

    問題:第2次導関数を利用して、次の関数の極値を求めよ。 f(x)=e^x cos x (0≦x≦2π) f ' (x) = e^x cosx - e^x sinx = e^x (cosx-sinx) f ''(x) = e^x (cosx - sinx) + e^x (-sinx -cos x) f ' (x) = 0 とすると、sinx - cosx =0 したがって、a sinθ+ b cos θ= √(a^2 + b^2) sin (θ+α) sin α= b / √(a^2 + b^2) cos α= a/ √ (a^2 +b^2) したがって、√2* sin (x-π/4) 0≦x≦2πより、-π/4 ≦ x - π/4 ≦ 7π/4 x - π/4 = 0, π すなわち x=π/4, 5π/4 f '' (π/4) = - 2/√2 * e^(π/4 ) < 0 f '' (5π/4) = 2 / √2 * e^ (5π/4) > 0 よって、f (x) は、 x = π/4 で 極大値 1/√2 * e^(π/4 ) x = 5π/4 で 極小値  - 1/√2 * e^ (5π/4) となる。 ここで質問なんですが、この f(x)=e^x cos x (0≦x≦2π) のグラフの座標のとり方が分からずに困っています。 自分で手書きで模範回答を写して書いてみたのですが、もし分かりにくかったらすみません。 それから、極大値について、グラフを見る限り、f (x) = 2πのときが最も大きいように思ったのですが。 これは間違いなのでしょうか。 教えてください、お願いします。

  • 偶関数、奇関数の積分

    定積分で 関数f(x)が奇関数なら ∫[-a→a]f(x)dx=0 偶関数なら ∫[-a→a]f(x)dx=2∫[0→a]f(x)dx というものがありますが、 偶関数のとき∫[-a→a]f(x)dx=2∫[0→a]f(x)dx これが0になることはありえますか?