• ベストアンサー

式の証明

x,y,z∈Nがx^(2)+y^(2)=Z^2をみたすとき (1)x,y.zの内少なくとも1つは偶数である。 (2)x,y,zの内少なくとも1つは5の倍数である。 (1)は、x,y,zすべてが奇数と仮定すると 奇数+奇数=偶数・・・・ で解いたのですが、 (2)においては、何個か数字を代入して規則性が (3n)^(2)+(4n)^(2)=(5n)^2 になるのは、分かりました。こんなやり方で解いて良いのでしょうか? 正式な解き方を教えてもらえないでしょうか? よろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • age_momo
  • ベストアンサー率52% (327/622)
回答No.5

まず、一点注意しておきますと >(2)においては、何個か数字を代入して規則性が >(3n)^(2)+(4n)^(2)=(5n)^2 これは間違っています。例えば n^2-(n-1)^2=2n-1 ですので、(2n-1)が整数の2乗になっているようなnについて与式が成り立ちます。 2n-1=25 n=13 よって 5^2+12^2=13^2 その他、 7^2+24^2=25^2 9^2+40^2=41^2 などがあります。いずれも5の倍数が有ますがzとは限りません。 今、x^2+y^2=z^2が成り立っていてx,y,zがいずれも5の倍数で無いとすると、 x^2=5k±1 y^2=5m±1 z^2=5n±1 x^2+y^2=5(k+m)±2 or 5(k+m) x^2+y^2≠z^2 で矛盾します。

show-ten
質問者

お礼

回答ありがとうございます。 ご指摘ありがとうございます。 なんとかできました。 そうですよね。x,y,zがいずれも5の倍数でないとすると・・・ で余りに注目するんですよね。 ありがとうございます。

その他の回答 (4)

回答No.4

No2です。 2,3が起こりえないのはz^2を割ったあまりは 0,1,4のいずれかだからです。 z^2が5で割り切れるとzが5で割り切れるのは No3の方が説明されていますが、 一般に素数pがa^2(aは自然数)を割り切るとき pはaを割り切ります。 証明は素因数分解の一意性という整数の性質を使います。 a,a^2の素因数分解を考えてみてください。 a=p1^{q1}...pk^{qk}(piは素数) a^2=p1^{2q1}...pk^{2qk} a^2がpを素因数に持つと一意性から必ずp1,...,pkのなかに pを含んでいます。 だからaもpで割り切れます。

show-ten
質問者

お礼

度々ご回答ありがとうございます。 なんとか理解できることができました。

  • rtz
  • ベストアンサー率48% (97/201)
回答No.3

No2の方の補足。 ZとZ^2の下一桁を考えて見ましょう。 Z^2が5の倍数の倍数ならZ^2の下一桁は0か5です。 二乗して下一桁が0になるのは、Zの下一桁が0のときだけ。 二乗して下一桁が5になるのは、Zの下一桁が5のときだけ。 つまりどっちにしろZも5の倍数になってしまうというわけです。

show-ten
質問者

お礼

回答ありがとうございます。 なんとかできました!

回答No.2

整数の二乗を5で割ったときあまりは0か1か4になります。 x、yのどちらかが5で割り切れたらそれでよし、 両方とも割り切れなかったらx^2+y^2を5で割ったあまりは 1+1=2、1+4=5、4+4=8=3+5 で0,2,3のいずれかになりますが、 2,3は起こりえない。 したがってz^2は5でわりきれる。 zは5で割り切れる。

show-ten
質問者

お礼

回答ありがとうございます。 2、3が起こりえないのは、zが整数にならない という理由からでよろしいんですよね? また、z^2が5で割り切れるとzが5で割り切れると いうのは、なぜなんでしょうか?

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

整数を 2乗したときに, 5で割った余りがいくつになるかを考えてみてください.

show-ten
質問者

お礼

回答ありがとうございます。

関連するQ&A

  • 整数問題の証明

    「ある整数n(n+2)が8の倍数ならばnは偶数であることを証明せよ。」 という問題で、この問題の解答を一応書いておくと、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n=2k-1(kは整数)とおいて、 n(n+2)=(2k-1)(2k+1)=4k^2-1より、 n(n+2)は奇数なので8の倍数になりえず矛盾。 ゆえにnは偶数である」 ですが、私は、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n(n+2)=8k(kは整数)と表せるので、 n^2=2(4k-n)となり、n^2は偶数だから、 nが奇数ならばn^2も奇数なので矛盾。 ゆえにnは偶数である」 と解いたのですが、これは解答として成立しますか? 違うのであれば具体的にどこが違うのかもお願いします。

  • 数学Aの問題です。

    nが3以上の整数のとき、xのn乗+2掛けるyのn乗=4掛けるzのn乗はx=y=z=0以外に存在しないことを証明せよ。 x=y=z=0でない整数x、y、zで題意の式を満たすものがあると仮定する。~~~~~~ よって、題意の式を満たす整数x、y、zは全て2の倍数である。・・・・・・(1) x=2k、y=2l、z=2m(k、l、mは整数)として題意の式に代入すると、kのn乗+2掛けるlのn乗=4掛けるmのn乗となる。 よって整数k、l、mは題意の式を満たすから、 x、y、zが題意の式を満たせばx/2、y/2、z/2も題意の式を満たす。・・・・・・・(2) 仮定より、x、y、zのうち少なくとも1つは0でない。0でない整数は全て、2のp乗かける(2q-1){p、qは整数でpは0以上}の形に表される。よってx、y、z、の0でないものの内、2の指数pの最小のものをNとすると、x/2のN乗、y/2のN乗、z/2のN乗のうち少なくともひとつは奇数となる。 ゆえに、x、y、zは(2)により題意の式を満たすが、(1)を満たさないから矛盾する。 したがって、nが3以上の整数のとき、題意の式を満たす整数x、y、zは」x=y=z=0だけである。終。 この回答の(2)の下からをやることの持つ意味と、なぜ少なくともひとつは奇数になれば、ゆえににつながるかを詳しく教えてください

  • 証明

    m,nが奇数のとき、(m^2)-(n^2) は8で割り切れることを証明するには m=2α+1 n=2β+1 (α、βは整数とおくと) (m^2)-(n^2)=(m+n)(m-n) m+n=2(α+β+1) m-n=2(α-β) (m^2)-(n^2)=4(α+β+1)(α-β) までは考えたのですが そのあと、 (1)αが奇数,βが奇数⇒α+β+1が奇数,α-βが偶数   (2)αが奇数,βが偶数⇒α+β+1が偶数,α-βが奇数   (3)αが偶数,βが奇数⇒α+β+1が偶数,α-βが奇数   (4)αが偶数,βが偶数⇒α+β+1が奇数,α-βが偶数 となり,(α+β+1)(α-β)は偶数です. よって、8の倍数といえる これでも合ってますか? 以前、回答がこなかったのでもういちどおねがいします

  • フェルマー?の証明

    X,Y,Zを0でない整数として、もしもX3乗+Y3乗=Z3乗が成立しているならば、X,Y,Zのうち少なくとも一つは3の倍数であることを証明せよ。(フェルマーの定理を知らないものとする。) と言う問題で、どのような順序をもって証明するべきなのかがわかりません。 また、実際にX、Zに3や6等の数字を代入したのですが答えが出ませんでした。 このような、質問は初めてなのでこのようなカンジで良いのかわかりませんが、よろしくお願いします。

  • 証明

    x,y,zを自然数として、p=(x^2)+(y^2)+(z^2)とする。 x,y,zがいずれも3の倍数でないならば、pは3の倍数である問題で nを3の倍数でない自然数とするとkを整数とすると どうしてn=3k±1と表すことが分かりません。

  • 素数、偶数、奇数、倍数を求める。

    整数n1と整数n2に適当な値を代入して、n1からn2までの整数を発生し、発生した個々の整数について調べたいのです。 結果は 10 は偶数で 5 の倍数です。 11 は素数です。 12 は偶数で 6 の倍数です。 13 は素数です。 14 は偶数で 7 の倍数です。 15 は奇数で 5 の倍数です。 16 は偶数で 8 の倍数です。 17 は素数です。 18 は偶数で 9 の倍数です。 19 は素数です。 20 は偶数で 10 の倍数です。 となりたいのです。 教えてくださいお願いします。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • 式と証明

    x<y<zである自然数x,y,zについて、(y-2/x)+(z-2x/y)+(x-2y/z)=-7/2が成り立つ時、zは偶数であることを証明せよ。 という問題での方針について質問なのですが、 まずこの問題を見た時、ぱっと、因数分解して、x-2y<0,2z-y<0より求めれそうだな、とか思い浮かぶのでしょうか?またそうならば、何をすればよいかがなぜわかるのでしょうか?(何を根拠に?)またどういう基準でこの問題はこう解こうとか決めるのでしょうか?それとも、1つ2ついけそうなやり方を考えて、試行錯誤を繰り返すのでしょうか?

  • エルデスシュトラウスの予想を証明しました。完成版

    前回掲載した証明方法は、説明が不十分のようなので補足する意味で、完成版を掲載します。 Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。 Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。 次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。 Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。 Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。 Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。 この方法で、1/X+1/Y+1/Zと表せないNがあったら教えてください。