• ベストアンサー

教えてください。

rei00の回答

  • rei00
  • ベストアンサー率50% (1133/2260)
回答No.4

(2)について > 平面上にどの2本も互いに平行でないは10本の直線がある > ただし、3本以上の直線が1点で交わることはないとする。  と言う事は,直線を2本選べば交点が1つできるわけですね。つまり,「交点の数」=「10本の直線から2本を選ぶ選び方の数」です。  よって,「交点の数」= 10C2 = 10!/(8!・2!) = 10・9/2 = 45  いかがでしょうか。

yuiyuio
質問者

お礼

ありがとうございました。 解けました。

関連するQ&A

  • 数学の定理や概念でただし書きの場合分けをなくしたい

    たがいに平行でない平面2直線は交点を一つ持つが、たがいに平行な二つの平面直線 ax + by + c = 0 と ax + by + d = 0 は c = d で完全に一致しなければ実平面上で交点を持たない。 ところが実射影平面において、平行な直線(ただし一致しない)の式を斉次化して、斉次座標で [b, a, 0] = [b/a, 1, 0] という交点を見つけることができます。 では、たがいに一致する二つの平面直線も唯一の交点を持つような理論(ただし、ある程度の意味を持つ)を考えることはできますか? 最高次の係数が0でない実数係数二次方程式は、判別式が正のとき2つの解、判別式が0のとき1つの解、判別式が負のとき0つの解をもつ。 ところが、判別式が0のときは重解の概念、判別式が負のときには複素数の概念を考えることで、判別式の符号にかかわらず、2つの解を持つと考えることができます。 では、最高次の係数が0の二次方程式も2つの解をもつというような理論(ただし、ある程度の意味を持つ)を考えることはできますか?

  • 実部と虚部が共に正有理数であるような複素数の全体

    実部と虚部が共に正有理数であるような複素数の全体をA、 実部と虚部が共に自然数となる複素数同士の比として表せる複素数の全体をBとおく時、 A=Bとなるのでしょうか?

  • パズル的難問、平面上の異なるn直線でできる交点数

    にゃんこ先生といいます。 平面上に異なる2直線があったとします。 「=」型のとき、交点数は0個。 「×」型のとき、交点数は1個。 平面上に異なる3直線があったとします。(同一点で交わっていてもすべて平行でもかまいません。) 「≡」型のとき、交点数は0個。 「*」型のとき、交点数は1個。 「キ」型のとき、交点数は2個。 「△」型のとき、交点数は3個。 平面上に異なる4直線があったとします。(同一点で交わっていてもすべて平行でもかまいません。) 交点数は、0個、1個、3個、4個、5個、6個の場合があります。交点数が2個の場合はありません。 このように考えていくと、平面上の異なるn直線でできる交点数の可能性はどうなるのでしょうか? 0個や1個やn(n-1)/2個の可能性があるのはすぐに分かります。 いろいろ検索したのですが、参考となるサイトがまったく出てきませんでしたので、参考サイトを教えていただく形でもかまいません。 直線を増やしていったときのハッセ図を見てみたいです。 なお今回と趣旨は異なりますが、「平面にn本の直線をどの2本も平行でなく、また、どの3本も1点で交わらないように引いたときにできる三角形の領域の総数」の話題は見たことがあります。

  • 数学の問題がわかりません。

    (1)複素数平面上に3つの複素数z(1)=(1/2)+(√(3)/2)i , z(2)=i , z(3)=z(1)+z(2)を図示することにより、tan(5/12)πは何か? (2)また、0でない複素数z=x+yi(x,yは実数)に対して、w=z^(2)+1/z^(2)とおく。wの実部が正となる条件は何か? (3)次に、1≦|x|+|y|≦√(2)のとき、wの虚部が0以上となるようなzの存在する範囲の面積は何か? わかる方、できれば詳しく教えてもらえるとありがたいです。御手数かけます。 お願い致します。

  • 平面分割

    少しややこしいことを書きますが、どなたかわかりやすいご回答いただければ幸いです。 まず問題が、 『平面上にそれぞれ平行でない6本の直線があり、3本以上のどの直線も1点で交わらないとき、これらの直線によって平面はいくつに分けられるか。』なのですが、、 ●「3本以上のどの直線も1点で交わらないとき」とはどのような状態を指しているのでしょうか?? というのと、 ●そしてもし仮に、私が想像する、直線が同士が交わる交点が1点だけにならないということであれば、3本目の直線は交点が一つになるように引くのと(これはダメ×)、2点になるようにひくの2通りだけですが、4本目からは、交点1つ(これはダメ)のほか、交点2つ、交点3つと後者二つは可能性があり、どちらをとるかで平面の数は変わってくるように思うのですが、どの部分の考え方を修正したらよいでしょうか??

  • 組み合わせの図形への応用の問題が分かりません

    こんにちは。 『平面上に、3本のみが互いに平行で、どの3本も1点で交わらない20本の直線がある。このとき、平面上の交点は全部で何個あるか。また、これら20本の直線により、平面は何個の領域に分割されるか。』 という問題の、平面上の交点は全部で187個というのは出せたのですが、「平面は何個の領域に分割されるか」がいくら考えても分かりません。 答えは208個なのですが、途中の考え方を教えて下さい。 よろしくお願いします。

  • 数III、複素数平面上の図形に関する問題です。

    数III、複素数平面上の図形に関する問題です。 「複素数zの実部をRezで表す。w=1/zとする。 (1)|z|>1かつRez<1/2を満たすzの領域を複素数平面上に図示せよ。 (2)点zがRez=1/2を満たしながら動くとき、点wが動く曲線を複素数平面上に図示せよ。 (3)点zが(1)で求めた領域を動くとき、点wが動く領域を複素数平面上に図示せよ。」 答えは画像にある通りです。考え方・解き方を教えていただきたいです。よろしくお願いいたします。

  • 平面ベクトルと複素数の関係について

    複素数の実部と虚部を平面上の(x,y)と対応づける事をよくしますよね? これには、どのような利点があるのでしょうか? ※複数あると思うので、具体例を列挙していただけると助かります。 また、ベクトルの成分同士(平面ベクトルで言えばxとy)は 次元が違いますからxとyが干渉し合う事はありません。 (yはどこまでいってもどこまで) でも複素数の実部と虚部には i*i = -1 という実部と虚部を繋ぐ関係式があるので 実部と虚部は完全に独立した存在ではないと思うのです。 (もちろん積さえ考えなければ、実部と虚部は独立しているというのは理解できます。。) よって、ベクトルと複素数は似て非なるものではないかとおもうのですが。。 それに関連して、あるサイト上で以下のような記述を発見しました。 「 まずはa→=(1,3),b→=(2,2)のように,ベクトルを成分で表します。これを複素数だと思って, a=1+3i,b=2+2i と読み替えてください。この2つの複素数の掛け算は,   (1+3i)(2+2i)=2+2i+6i-6=-4+8i となります。これを再びベクトルとして読み替えると(-4,8)となりますが・・・ 実はこれがベクトルの積の計算方法なのです。   a→×b→=(1,3)×(2,2)=(-4,8) というのが正解です。 」 たとえば、i*i= -2 という風に定義していたとしたらこの計算結果は変わってきますよね? なのでこのように複素数とベクトルを同一視するのはおかしいと思うのですが。。 ベクトルと複素数に関して、理解を深めたいので解説してください。 お願いします!

  • 自明でない零点の虚部

    リーマン予想:リーマンのゼータ関数の自明でない零点は実部を1/2とする複素数である。 ここで、疑問なのですが、自明でない零点の虚部は、どうなっているのでしょうか。 自明でない零点は無限に存在しているのですから、 虚部が自然数、あるいは、有理数、あるいは、代数的数などの、 自明でない零点は存在するのでしょうか。 是非、知りたいところです。

  • 教えて下さい

    次の問題が分かりません。 平面上において4本だけが互いに平行で、どの3本も同じ点で交わらない10本の直線の交点の個数は何個ある? 答えだけでなく解き方も説明してもらえるとありがたいです。