• ベストアンサー

infの中にsupがあるとき

こんにちは. inf{sup S}という表記の場合, 解釈すればよいのでしょうか? Sの最小上界(上限)ですから, supSだけでよいと思われるのですが, どうして,infがついているのでしょうか? 情報が少ないですが,ご経験のある方お願いします.

  • iwow
  • お礼率91% (220/240)

質問者が選んだベストアンサー

  • ベストアンサー
  • adinat
  • ベストアンサー率64% (269/414)
回答No.1

Sにパラメータが二つついていて、supとinfは違うパラメータに関するものだからです。たとえばS=S(x,y)=x^2+y^2とします。supはx∈(-1,1)に関するものだと仮定します。そうすると、sup S=1+y^2となります。infはy∈(-1,1)に関するものとします。そうすると、inf(sup S)=1となります。この場合は、infとsupを入れ替えても同じ結論がいえますが、かならずしも順番を変えていいわけではありません。 当然ですが、Sが1パラメータで、supがその1パラメータに関するものならば、sup Sは定数となり、どのようなinfをとっても値は変えないので、sup S=inf(sup S)とはなります。

iwow
質問者

お礼

早々にありがとうございました. すごく分かりやすい丁寧な説明で,分からない箇所がその通りに解釈すれば理解可能でした. また,機会があればどうぞよろしくお願いいたします.

関連するQ&A

  • sup?inf?よくわかりません・・・

    質問なのですが、数列{An}の上限、下限を数列のなす集合{An}の上限、下限で定義しsup_nAn,inf_nAnとします。 このとき sup_n(An+Bn)≦sup_nAn+sup_nBn これが成立することはどのように証明すればいいのかさっぱり分かりません。よろしくお願いします。

  • Lim sup, Lim inf ????確率論??????

    確率論の本を読んでると、Lim sup, Lim inf という表記がでてきます。そして、これらが、Lim sup A(n) = ∩∪A(n) となり、 Lim inf A(n) = ∩∪A(n) となるとかかれてます。これはなぜなのでしょうか?しかも、なぜ、Lim sup と Lim inf が同じ表記になるのでしょうか?

  • supとinf

    解析演習という本に以下の説明がありました。 ----- u_n = sup{a_m; m>=n}, v_n = inf{a_m; m>=n} 実数列u_nは下に有界な広義単調減少列 実数列v_nは上に有界な広義単調増加列 ----- supというのは「上限」の記号なのに、「下に有界」という説明は正しいのでしょうか? また、「下に有界」でありながら「単調減少列」というのは成り立つのでしょうか? 減少度合いが少しずつ減って行き、ある値より下には下がらないということなのでしょうか?

  • 集合 上限 下限

    集合 上限 下限 Wikipediaによれば、 上界の集合の最小元(つまり、最小の上界)のことを、上限といい、sup(A) と書く。 下界の集合の最大元(つまり、最大の下界)のことを、下限といい、inf(A) と書く。 http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-kisosuri/supmax031208.pdf を参考にしたのですが理解出来できませんでした。 Aを実数の部分集合とするとき、 実数 a が、Aの上界であるとは、Aの任意の元x に対して、x≦a が成り立つことである。 そのなかで、最小の上界を上限と言う。 ピンときません・・・ 具体例を示して教えて頂けるとありがたいです。 ご回答よろしくお願い致します。

  • sup{-1/x:x∈(0,∞)}=0であることを上限の定義に従って証明

    R(実数全体)においてsup{-1/x:x∈(0,∞)}=0であることを上限の定義に従って示せ。 という問題がでました。 以下が私が考える証明です。 任意のa∈{-1/x:x∈(0,∞)}に対し、a<0であるから、0は{-1/x:x∈(0,∞)}の上界の一つである。 x<0とすると、Rの稠密性より、 x<z<0となるz{-1/x:x∈(0,∞)}が存在する。 従って、xは(0,1)の上界ではない。 以上から、0が最小上界である。 というのが私の証明です。 まずこの証明の流れが正しいかが心配です。 あと気になっていることが2点あるのですが、まず、{-1/x:x∈(0,∞)}は(-1,0)の範囲にあるということをこの証明の中で述べたほうがよいかということです。 2点目は、この問題はもとからxを使っているので、証明の中の3行目で、『x<0とすると』のxは使ってもよいかということです。駄目な場合は、どの文字が一番適しているかを教えてほしいです。 カイトウよろしくお願いします。

  • sup{-1/x:x∈(0,∞)}=0であることを上限の定義に従って証明

    実数Rにおいて、sup{-1/x:x∈(0,∞)}=0であることを上限の定義に従って示せ。 という問題が出ました。 以下が私の考えた証明です。 任意のa∈{-1/x:x∈(0,∞)}に対し、a<0であるから、 0は{-1/x:x∈(0,∞)}の上界の1つである。 y<0とすると、Rの稠密性より、 y<z<0となるz∈{-1/x:x∈(0,∞)}が存在する。 従ってyは(0,1)の上界ではない。 以上から、0が最小上界である。 大体はいいらしいのですが、 >z∈{-1/x:x∈(0,∞)}が存在する がちょっと問題があるみたいです。 Rの稠密性を使っても、{-1/x:x∈(0,∞)}のように、限定した集合の中にzが入ることは分からない、というのが問題みたいです。 ここが問題だということは理解できたのですが、それを証明の中にどのようにして述べればいいのかがわかりません。 回答お願いします。

  • sup | f (x)-f (y) | について

    sup | f (x)-f (y) | についての質問です。 今、ある閉区間で f は定義されているものとし、この区間で有界とします。 A = sup {f (x)} 、B = inf {f(x)} とおきます。 このとき、教科書によると sup | f (x)-f (y) | = A - B になるそうです。 しかし、以下の理由から私は sup ( f (x)-f (y) ) = A - B になるように思います。 ・A - B が( f (x)-f (y) ) の上界になる事 任意に f (x) 、f (y)  をとります。 このときA、Bの定義から f (x) ≤ A 、-f (y) ≤ -B となります。 したがって f (x) - f (y) ≤ A-B となり、A - B は( f (x)-f (y) ) の上界になります。 ・A - B が( f (x)-f (y) ) の最小上界である事 任意に正の数2εをとります。 (εだと以下やりにくいため2εとしました) A - B -2ε <  f (x)-f (y) となる f (x) 、f (y) を見つければOKです。 A - B -2ε= (A-ε) - (B+ε) と変形すると、A、Bの定義から A-ε < f (x) 、 -(B+ε) < -f (y) となる f (x) 、f (y) がとれます。 したがって両辺を足してA - B -2ε <  f (x)-f (y) となります。 この証明が正しければ sup ( f (x)-f (y) ) = A - B となりますが、すると sup ( f (x)-f (y) ) = sup | f (x)-f (y) | となりますが、これは正しいのでしょうか? 今のところ反例が思いつかないので、正しいのか分からないのですが、 わざわざ絶対値をつけているため、この式は成り立たないように思うのですが… 私の考えで間違っているところがあれば教えて頂きたいです。

  • 数列と極限

    集合A,Bについて A ⊂ B inf A >= inf B sup A <= sup B が成立つことを背理法を使って示せ。 infは集合の下限を示し、supは上限を示す。 この問題の証明しかたが全くわかりません。 分かる方、よろしくお願いします。

  • 上界と下界、上限と下限

    上界と下界、上限と下限 数列の定義(解析演習 by 杉浦光夫さん)のpage4に上界と下界、上限と下限の説明があります。 [実数Rの部分集合Aにおいて、実数xですべてのAの元aに対してa<=xとなるものを上界]という説明は納得できました。 一方で上限の説明で [Aの上界に最小元が存在するときこれを上限という]という説明がよく理解できません。 Aの上界という部分では集合Aのうちの最大の値を持つ元がでてくると思うのですが、「最小元」を持ち出して「上限」と言っているのがよくわかりませんでした。 上限の具体的な例など教えていただけますでしょうか? また、Aの上界に最小元が存在しないとき、の例というのはどういうものでしょうか。

  • 解析学の基本事項の証明の仕方・・・

    解析学の基本事項の証明の仕方・・・ 上限・下限の証明を、∀、∃を使って、どう表記すべきか? 全てのsup , inf の記号の下に、 n∈Nが付きます。 sup(a_n)={a₁,a₂,a₃・・・・a_n} 、 sup(b_n)={b₁,b₂,b₃・・・・・,b_n} sup(a_n+b_n)=sup(a₁+b₁,a₂+b₂+・・・・・a_n+b_n}                                とするとき (1)a_n>0 ,b_n>0⇒ sup(a_n・b_n) <= sup(a_n)・sup(b_n) (2)a_n>0 ,b_n>0⇒ inf(a_n・b_n) >= inf(a_n)・inf(b_n) (3)sup(a_n - b_n) >= sup(a_n) - sup(b_n) (4)inf(a_n - b_n) <= inf(a_n) - inf(b_n) (5)inf(a_n + b_n) >= inf(a_n) + inf(b_n) 上記(1)~(5)の証明を、∀、∃を使ってどう表記すべきか? 基本的な性質みたいなものなので、三角不等式の証明みたいな感じに なるような気はしますが、記号の使い方に慣れていないので手が出ません。 どのように記述したら証明した事になるのでしょう?