• ベストアンサー

分数式の恒等式について

「2/(x^2-1)=a/(x-1)+b/(x+1)の両辺が分数式として等しくなるような定数a,bの値を求めよ」という問題で与式の分数式の分母を0としない値(x≠1、-1)の元で両辺にx^2-1をかけると 2=a(x+1)+b(x-1) ここでなぜx=1、-1を代入して定数a,bをもとめてよいのですか?「分数式の分母を0としない値(x≠1、-1)の元で」という条件がついているのでx=1、-1は代入できないのではないのでしょうか? この部分が少し納得できません。どなたかお願いします。

  • zyutu
  • お礼率58% (37/63)

質問者が選んだベストアンサー

  • ベストアンサー
  • tasu9
  • ベストアンサー率42% (9/21)
回答No.4

分母を払ってるので代入してもOKですよ。 2=a(x+1)+b(x-1) は1,-1以外のすべてのxで成り立つ式なので、当然1や-1でも成り立ちます。・・・(ア) なので、最初の式ではNGだった1,-1を代入してa,bを求めてよいのです。 (ア)のところは、「n次の等式がn+1個のxで成り立つとき、この等式は恒等式となる」という性質を使っています。 答案には↑と同じことを書けば減点はないと思いますよ。 あと、この方法で求めたら、最後に本当に答えになっているかの確認が必要です。

zyutu
質問者

お礼

ありがとうございました

その他の回答 (5)

  • pyon1956
  • ベストアンサー率35% (484/1350)
回答No.6

代入法で恒等式を解いたとき、その答は、厳密には必要条件です。(これは整式の場合でも) つまり「この答は正しいかどうかはわからないが、これ以外に答は無い」というものです。 元の式が整式の場合、実は十分条件にもなることが、#4さんや#5さんの仰るようにいえますので、この部分を高校数学では省略します。 しかし、分数式ではたしかに仰るように変な感じがしますね。ですから十分性をいえばいいのです。 つまりは実際そうなっていることをa,bに「答」を代入して式変形になっていることを確かめるのが必要です。

zyutu
質問者

お礼

ありがとうございました

  • guuman
  • ベストアンサー率30% (100/331)
回答No.5

多項式の連続性から自明だからです なお 2/(x^2-1)=a/(x-1)+b/(x+1) のaとbを求めるのに (x^2-1)をかけるのは損です 頭の中で(x-1)をかけて1を代入しaを出し 頭の中で(x+1)をかけて-1を代入しbを出す のがベストです 消える項があって楽だからです 瞬間芸になります

zyutu
質問者

お礼

ありがとうございました

noname#17965
noname#17965
回答No.3

質問者様のお話しの通りです。確かにおかしいですね。普通は以下のように求めます。 右辺を通分します。つまり、右辺第一項の分子と分母にx+1を掛け、第2項の分子と分母にx-1を掛けます。 すると右辺は1個の分数で表されます。 分子=a(x+1)+b(x-1) =(a+b)x+aーb 分母=x^2-1=左辺の分母 xの恒等式として成立するために a+b=0 a-b=2

zyutu
質問者

お礼

ありがとうございました

  • tatsumi01
  • ベストアンサー率30% (976/3185)
回答No.2

確かに納得できません。 2 = (a+b)x + (a-b) とし、x が (1, -1 以外の) どんな値でも上式が成立するので、a+b = 0, a-b = 2 とするのが正解でしょう。 ただ、 x = 1+ε, x = -1+ε でも成立するので、極限を取って 2 = a(x+1) + b(x-1) が x = 1, -1 でも成立するとすれば回答のようにできますが、記述問題だったら却って長くなりますね。

zyutu
質問者

お礼

ありがとうございました

  • sunasearch
  • ベストアンサー率35% (632/1788)
回答No.1

私も納得できません。 おっしゃる通り、ある条件下で現れた式は、条件を満たす時にしか適用できません。 ですから、記述式だと減点もしくは不正解とされることもあるでしょう。 マークシート用の解き方として、とりあえず答えを出すためのテクニックとしては用いられるのかもしれません。

zyutu
質問者

お礼

遅ればせながらありがとうごうざいました

関連するQ&A

  • 青チャート 基本例題10(分数式の恒等式)

    次の等式がxについての恒等式であるとき、定数a,b,cの値を求めよ。 -2x^2+6/(x+1)(x-1)^2=a/x+1-b/x-1+c/(x-1)^2 僕の解き方 まず分母を全て揃えます、その後、そろった分母の式(x-1)^2(x+1) を掛けます。 そうすると、分数でない形になり、数値代入法 x=1,-1,2を代入します。 答えは解答と一致しました。 解説 分数式でも、分母を0とするxの値(本問ではー1、1)を除いて、 すべてのxについて成り立つのが恒等式である。与式の右辺を通分して 整理すると両辺の分母は一致しているから、分子も等しくなるように、 係数比較法または数値代入法でa,b,cの値を定める。このとき、分母を払った多項式を考えるから分母を0にする値x=1、ー1を代入してもよい。(以下省略) 検討 分母を0にする値x=-1,1を代入してよいかが気になるところであるが、これは問題ない。なぜなら、代入したのは、x=1、ー1でも成り立つ等式である。したがって、xにどんな値を代入してもよい。 そして、この等式が恒等式となるように係数を定めれば、両辺を(x+1) (x-1)^2で割って得られる分数式も恒等式である。ただし、これはx=1、 -1を除いて成り立つ。 教えてほしい所 恒等式・・・含まれている文字にどのような値を代入しても、その等式 の両辺の値が存在する限り常に成り立つ等式を、その文字についての恒等式という。 この説明のその等式の両辺の値が存在する限りの部分がイマイチぴんとこないのでスルーしていたせいでこの解説を読んで混乱しています。 僕の解き方は解説のような解き方ではないんですが、明らかに0にしているので解き方としてマズイですか?? また、なぜなら、代入したのは、x=1、ー1でも成り立つ等式である。という部分がサッパリ理解できません。 消しちゃいけないのに、なぜ0になるような数値でもいいのでしょうか?? 後、ただし、これはx=1、-1を除いて成り立つ。なのはなぜですか??? 文章能力がないので非常に分かりずらいかもしれません。 意味がわからない部分があったら補足します。 教えて下さい。

  • 分数式の恒等式

    例えば、 「5x+1/{(x+2)(x-1)} = (a/x+2)+(b/x-1)がxについての恒等式となるように、定数a,bを求めよ」 という問題で、{(x+2)(x-1)} を両辺にかけてから係数を比較したりして解きますが、なぜ直接分数の形のまま、x=1,x=-2を代入してはいけないのでしょうか?(確かに答えが違いました。) 教科書には解き方が書いてあって、理由はかいてないので気になりました。

  • 有理関数を部分分数展開する際に・・・

    今、有利関数を部分分数展開するところを学習しているのですが、ちょっと疑問に思ったことがあるので質問させていただきます。 参考書には例として以下のように乗っています。 P(x)/Q(x)=1/(x-1)(x+3)^3(x^2+2x+2)^2 =A/(x-1) + B/(x+3) + C/(x+3)^2 + D/(x+3)^3+Ex + F/(x^2+2x+2) + Gx+H(x^2+2x+2)^2 (但し(Pの次数)<(Qの次数)) のように載っています。つまりは積分ができるように変形しているにすぎないのですが、ここで1つ疑問ができたのです。 分母の次数より分子の次数が小さくしなければならにわけですが、分母が(x+3)^2や(x^2+2x+2)の次数は2時ですので次数は定数か1次になるわけです。 部分分数展開するときは分子を文字で置くのがセオリーですが、定数か1次式でおく判断はどのようにつけたらいいのでしょうか?(分子をAとおくのかAx+Bとおくのか) ある問題では分母が2次式で分子は定数で置いたり、ある問題では分母が2次で分子は1次で置いてたりしてます。 例 1/(x-1)(x^2+1)^2 =A/(x-1) + Bx+C/(x^2+1) + Dx+E/(x^2+1)^2 とおくのが正解になっています。第1項は納得なのですが 第2項は分母が2次なので2次より小さければよいので定数ではいけないのか?第3項に至っては分母が4次式になるので分子を3次式もしくは2次式、定数でなくてはいいのか?というのが質問の核となる部分です。 随分ながくなりましたがどうかご存知の方がいらっしゃいましたらよろしくお願い致します。

  • 部分分数分解について

    1/s(s^2 + 4)を部分分数分解したいのですが、 (与式)=A/s + Bs+C/s^ 2+4 + Ds+E/(s^ 2+4)^2・・・(1) (A,B,C,D,E:定数) として、ヘビサイトの定理を適用すると、 Aは、(1)の左辺×sにs=0を代入することでA=1/16 D、Eは、(1)の両辺に(s^2 + 4)^2を掛けてからs=j2を代入し、両辺を比較することでことでD=-1/4、E=0 というように求めたのですが、B、Cを求めるのがどうもうまくいきません。 どなたかわかる方おられましたらご教授いただけないでしょうか。お願いします...

  • 分数関数は恒等式と言えるのですか?

    下の問いの分数関数の等式では、x=2 ,x=-3を除外しています。 つまり、定義域は 2と-3以外の数 恒等式の定義を「どんな数でも両辺の等式が成り立つ式」とすると、 下の問いの式では、x=2 ,x=-3では等式が成立しません。 つまり、どんな数でも成立する式ではありません。 よって、問いの分数式は恒等式の定義を満たさないので、恒等式とは言えないと 思うのです。もし、問いの分数式を恒等式と呼べるとしたら、その理由を教えて下さい。 (問)次の恒等式を満たすa、bを求めよ 5/{(x-2)(x+3)} = a/(x-2)+b/(x+3)

  • 青チャート 基本例題5(部分分数分解)

    1.1/b-a(1/x+a-1/x+b) 解説 分数式の分子が定数、分母が2つの1次式の積、その差が一定のときは、上の1の結果1/(x+a)(x+b)=1/b-a(1/x+a-1/x+b)ただし、 a≠bを利用して部分分数に分解すると、消える項がでてきて、計算が楽になる場合がある。 教えてほしいところ なんでこんな分解の仕方ができるのかとても興味深く、不思議です。 どういう性質を利用して、分解しているんですか??? また、分数式の分子が定数、分母が2つの1次式の積、その差が一定のときしかできないんでしょうか?? 教えて下さい。お願いします。

  • 部分分数の解き方

    次の分数式を部分分数に分解しなさいという問題で、どう解いていいかわからなくなってしまったので途中式混みで教えてください。 (1)x^2-4分のx (2)x^2+3x+2分のx-1 (3)x^2(x+1)分の1 (4)x^3+1分の1 若干式が見づらいと思うので、いちよう説明しておきます。 O分の△ Oが分母 △が分子です。

  • 数学 部分分数分解

    部分分数分解 3x+2/x(x+1)^2 を部分分数分解せよ。 という問題 解答は 3x+2/x(x+1)^2=(A/x) + (B/x+1) + 〔C/(x+1)^2〕 とおいて、xの恒等式として解くと書いてあり、注意書きのところに 右辺を (A/x) + 〔B/(x+1)^2〕 としてはダメ とあるのですが、いまいち理由がわかりません。 〔B/(x+1)^2〕について、分母が二次式だから分子をBx+Cにしたら大丈夫なんですか? また、解答の (A/x) + (B/x+1) + 〔C/(x+1)^2〕 のように、なぜそれぞれ分けて三つも書かないといけないのかがわかりません。 また、もし 3x+2/x(x+1)^2 ではなく、3x+2/x(x+1)^4 だとしたら (A/x) + (B/x+1) + 〔C/(x+1)^2〕 + 〔D/(x+1)^3〕 + 〔E/(x+1)^4〕 となるんですか? また 3x+2/x(x+1)(x+2)(x+3) のような感じだったらどうなるのか・・・ 上の問題に限らず、分母をどのように分けて恒等式を作ったらいいのかがわかりません。 部分分数分解の分母の分け方の考え方を教えてください。

  • 部分分数分解について

    こんばんは。 部分分数分解というもののついて質問です。 一般的に、分母が(x+n):nは定数 の積になっていて、分子が分母の次数より低ければ、分母の因数で部分分数に分解することができます。 このとき各項の分子は定数になっています。 例) (x+3)/(x+1)(x+2)=2/(x+1)-1/(x+2) では分母が因数分解できない場合や重解のときはどうなるのでしょうか。 例)3x/(x^2+1)(x+5)^2 など。 また、分解したあとの項の分子にxが残っている場合もありました。 これはどのような時に起こるのでしょうか。 部分分数分解とはどのような理論にそってやっていることなのかイマイチ直感的に理解できないので、詳しく教えてください。 ただ、高校生でも理解できるレベルでお願いします(><)

  • 高校数学の部分分数分解についての質問です。

    1/x^2(x+1) = a/x^2 + b/(x+1) + c/x ・・・・・・ (1)  両辺を x^2(x+1) で払うと 1 = a(x+1) + bx^2 + cx(x+1)  x = 0 のとき a = 1、x = -1 のとき b = 1 なので 1 = (x+1) + x^2 + cx(x+1)  x = 1 のとき 1 = 2 + 1 + 2c なので c = -1.  検算してみると確かに 1/x^2(x+1) = 1/x^2 + 1/x+1 - 1/x となるのですが、これを導くのになぜ(1)のような形を前提としておくのでしょうか?  a/x^2、b/(x+1) に加え c/x をおく理由がわかりにくいのです。というのも(1)の左辺の分母は分母は x^2 と (x+1) かけたものなのですから 1/x^2(x+1) = a/x^2 + b/(x+1) でもよさそうなものですが、(1)と同じように計算しても   1 = a(x+1) + bx^2 ・・・・・・ (2)   x = -1 → b = 1.   x = 0 → a = 1.   1/x^2 + 1/(x+1) = (x+1+x^2)/x^2(x+1)  となり全然ダメなことは確認できます。しかしなぜこれではダメなのかと問われるとうまく説明できません。  たとえば(1)を少し変形した   1/(x-1)^2(x+1) = a/(x-1)^2 + b/(x+1) + c/(x-1) を(1)と同様に計算してみると   a = 1/2, b = 1/4,  c = -1/4 と正しく部分分数分解されます。他にも三次式の分母の部分分数分解をいくつか試みた結果から推察するとどうやら x の三次式の分母が一次式で因数分解できるときは   1/(x+α)(x+β)(x+γ) = a/(x+α) + b/(x+β) + c/(x+γ) とおける。  三次式の分母 = 0 が重解を持つときは   1/(x+α)^2(x+β) = a/(x+α)^2 + b/(x+α) + c/(x+β) とおける。 ような気がするですが、そうしていい理由がいまいちしっくりきません。 http://mathtrain.jp/bubun をみたら(1)のような分解は証明なしに利用していいとあります。きちんと証明するには高校レベル以上の数学が必要なのでしょうか?  とりあえずは(2)がダメな理由がはっきりわかるだけでもありがたいのです。