• ベストアンサー

複素Newton法?

複素数版?のTaylor展開に基づく、複素Newton法を使って、x^3=1の解を求めるC言語のプログラムを作成しなくてはならないのですが、Taylor展開も、通常のNewton法も理解していますが、複素数になった場合、どのように使えばいいのか分かりません・・・ なんとなく、オイラーの公式によって、exp(ix)の形にするのかなぁとは思うものの、それ以外全く分かりません。 アルゴリズムのヒントだけでもいいので、どなたかよろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

解いたことがないので間違っているかもしれませんが、 xのかわりに a+bi とおいて、a,b の2変数のニュートン法を解けばよいように思えます。 2変数ですのでヤコビ行列を使った漸化式を用いるため、2x2の逆行列を求める必要があるのと、 複素数(a+bi)^3 を展開する必要があると思います。

engin
質問者

お礼

ありがとうございます! さっそく、参考にしてみます!!

engin
質問者

補足

実際にやってみたので、ここに報告しておきます! 出来ました!!おっしゃった通りにやったら出来ました。ありがとうございましたm(_ _)m

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • シュレディンガー/複素積分

    すみません、なにかヒントをください。学部2年女子です。 シュレディンガー方程式、 ih(∂ψ/∂t)=-(h^2/2m)(∂^2ψ/∂x^2) の解Ψ(x,t)=1/√(2π)∫exp(-ihk^2/2m+ikx)・F(k)dk F(k)を求めたところ、 F(k)=A√2σexp(-σ^2k^2) になりました。 そこで解にあてはめて、積分をしたいのです。 (hバーをhとかきました。Aは定数です。(規格条件から求め済)積分区間はどれも-∞から∞です。) 積分から先に息詰まりました。 自分では ∫exp(-ihk^2/2m+ikx)・exp(-σ^2k^2)dk の計算でオイラーの公式でとくのかな? とも考えましたが、先生がヒントでガンマ関数を使うとか言っていて、 もうよくわかんない状態です。 ちなみにまだガンマ関数、を習っていなく、使い方もよくわかりません。(一応調べましたが、理解できる能力がありませんでした) 複素関数は本当に初歩的な複素積分しかやっていません。 なにか解けるヒントをと思い投稿しました。 恐縮ですがどうぞご教授のほどおねがいします。 また、見難い文章ですみません。 なにか間違いがあればご指摘くださぃ

  • newton法での近似解の原理を教えてください!

    次の問題を教えてください!! 方程式 x^2+\exp(x)-\sin(x)-10=0 の近似解を newton 法で求める際,次の各項目の理由を newton 法の原理に基づいて説明せよ. * 初期値が 0 以下のとき,小さい方の近似解( x=-3.158・・・が求まる. * 初期値が 0 以上のとき,大きい方の近似解( x=1.9586・・・)が求まる. * 初期値が 0 のとき,近似解が求まらない.

  • 積分値を複素関数を使って求める

    お世話になります。 【問題】 実変数θに対する下記の積分値を、複素関数を使って求めよ。 ∫[ 0 → 2π ]1 / ( 5 - 3cosθ )^2 dθ 【自分の解答】 オイラーの公式より cosθ = ( exp( iθ) + exp( -iθ ) ) / 2 これを与式に代入して ∫[ 0 → 2π ]1 / ( 5 - 3 ( exp( iθ) + exp( -iθ ) ) / 2 )^2 dθ = (*) ここで z = exp( iθ) + exp( -iθ ) とおくと dθ/ dz = 1 / (dz / dθ) = 1 / iz ∴dθ= ( 1 / iz )dz また θ:0 → 2π z :2 → 2 よって (*) = ∫[2 → 2]1 / ( 5 - 3z / 2 )^2 ( 1 / iz )dz (ここから不明) 【質問】 上記のやり方では積分範囲が2 → 2となり被積分関数がどんなものであろうとその積分値は0になってしまいます。 私の解答は間違っていると思うのですが、何が間違っているのか、どうすれば正しくなるのかがわかりません。 どなたかご教授よろしくお願いします。

  • 【複素積分】0→πについて

    ∫[0,π] d/(d+acosθ)dθ (d>a>0) の計算なのですが、 複素数に拡張して考えました。 z=e^izとおき、オイラーの公式をつかって z(z:1→-1)に変数変換し、留数定理を用いて計算しました。 その結果、-2πd/√(d^2-a^2)となり、解答の2倍に なってしまいました。 良く考えてみれば、私が複素平面上に 上反面の半円の経路で積分したことが まずかったのかもしれない、と思っているのですが、 円を考えると、それはそれで積分ができません。 解き方が分からず困っています... どなたか数学に詳しい方、よろしくお願い致します。

  • マクローリン展開の問題です

    1 指数関数f(x)=exp(x)=ezをベキ級数展開(マクローリン展開)で表示しなさい。 2 前記のexp(x)において、xが複素数のiθ の場合、これを代入し、べき乗すれば、右辺の級数の値(複素数)の実部と虚部が求められる。次にsinθとcosθのマクローリン展開を行ない、実部がcosθ、虚部がsinθの展開に一致することを示せ。(オイラーの公式exp(iθ)=cosθ+i・sinθが成立することがわかる)。 但し、少なくとも第3項まで書き、あとは・・・でよい。 回答と解説をおねがいします

  • オイラーの公式による波の解析について

    オイラーの公式と実世界の波の扱い方がイマイチピンときません。 電磁気、量子物理などで、オイラーの公式を使った解析がでてくるので 少し困っております。少し数学と物理に詳しいかた、教えていただけませんか。 ・・・・・・・・・・・・・・・・・・・・・・・基礎は大丈夫だと・・・・・・・・・・・・・・・・・・・・・・ オイラーの公式 ある波があったとしたら y=exp(ix)=cosx+jsinx これはcosxとsinxの冪級数展開によって証明できることもやって数学 的な土台は大丈夫だと思うのですが さて本題ですが、 物理などでは電子や光子は波の性質と物質の性質をもち、 波としてみる場合 入射波と反射波の干渉による定常状態 が主に問題になるわけです。 例えば量子で言えば、波動方程式の解は ψ={C1exp(ikx)+C2exp(-ikx)}exp(iωt) C1,C2は積分定数 みたいな式が出てきて、 答えがisin(kx)とか出てきたらこの波はどういう波として解釈 するべきなのでしょうか? 逆にcos(kx)という波がでてきたらどう解釈すればいいのか。 それに関連して、別の視点からの質問もしたいと思います。 波を扱うとき、オイラーで波を表すときに、実数部だけを取って 考えたり虚数部だけを取って考えたりする時があります。これも上と 関連がある場合は合わせて教えていただけるとありがたいです。 (オイラーの定理は色々な使い方が工学上の計算であるようなので、  ごっちゃになっているかもしれないので聞いてみました。)

  • 複素正方行列の対数

    複素正方行列の指数関数は、実数域でのマクローリン展開を単純に拡張して xが実数のとき、   exp(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 + ... より、Aが複素正方行列のとき (Eは単位行列)   exp(A) = E + A + A^2/2 + A^3/6 + A^4/24 + ... と、できることがわかりました。 一方、対数関数に関しても同様に、 xが実数のとき、   log(1+x) = x - x^2/2 + x^3/3 - x^4/4 + x^5/5 - x^6/6 + ... より、Aが複素正方行列のとき (Eは単位行列)   log(E+A) = E - A^2/2 + A^3/3 - A^4/4 + A^5/5 - A^6/6 + ... で、単純に可能かと思ったのですが違いました。 例えば、具体的に、実数正方行列  { 2, 3 }  { 4, 5 } の対数は、  { -0.304+2.195i, 1.302-1.248i }  { 1.736-1.664i, 0.997+0.947i } となりますが、前記のように単純にマクローリン展開を拡張した方法では、 実数係数の行列から複素係数が出てくることはありえないことからも、 簡単に間違っていることがわかります。 ということで、複素正方行列のマクローリン展開の方法または、 具体的な計算方法(アルゴリズム)をご存知の方がおられましたら ご教示ください。

  • 複素関数論は何が美しいのか

     応用数学としての関数論を勉強中です。飛ばし読みではありますが、複素積分を利用して実関数の積分をするところまでなんとかたどり着きました。  さて、関数論は美しい数学であるということをよく聞かされたのですが、急いで読み過ぎたせいか、関数論の美しさに感動できるところまで至っていません。オイラーの公式から導かれる   e^(iπ) + 1 = 0 ・・・・・(#) は、もちろん関数論の本を読む前から知っていましたが、この等式を知ったときの驚きを上回る感動を今のところ感じることができません。  たとえば等角写像などは関数論では美しさはもちろん、おもしろさもさっぱりわかりませんでした。流体力学の本で等角写像を応用したジューコウスキー変換というものを知って、そのおもしろさがようやくわかり、感心もしましたが、感動するところまではいきませんでした(笑)。  また、実関数ではテイラーの定理を経由しないと(剰余項を調べないと)テイラー展開できませんが、複素正則関数はコーシーの積分公式から直接テイラー展開を導けるため、テイラーの定理が複素関数の場合不要になることなど、実におもしろいとは思いましたが、やはり (#) を初めて知ったときのような感動は味わえませんでした。  関数論のどこらあたりを精読すれば、よりおもしろく感じたり、数学美というものを感じることができるでしょうか?  どういうことを「美」と感じるかは個人差が大きいとは思いますが・・・・・

  • 高校 旧課程 複素数

    今は高校で虚数を扱うのは 方程式の解にでる√-1 = i ぐらいだと思うのですが 旧課程ではどんなことやっていたんでしょうか オイラーの公式とか複素微分、積分などやっていたんですか?

  • MATLABで指数関数を含む方程式の複素数解を求め

    MATLABで多項式と指数関数からなる方程式の解を求めたいと考えています。 実数解だけでなく、複素数解も求める必要があります。 例えば、 x^2-exp(x)=0 のような方程式を解きたい場合、 fzero(@(x)(x^2-exp(x)),2) を実行すれば、-0.7035という実数解が得られます。 しかし、複素数解は得られません。 なんとかして、複素数解も得られませんか? roots()関数を使えば、多項式からなる方程式に対しては、 複素数解を求めることができます。 しかし、今回の場合は使えません。 指数関数をテーラー展開する方法を考えたのですが、 解がどのあたりにあるのか見当がつかないので、 どの点周りにテーラー展開すれば良いのか分かりません。 最終的には、制御工学で遅れ型むだ時間を含むシステムの極を調べたいのですが、 特性方程式に指数関数が入ってくるので、どうやって求めれば良いのか分からずにいます。 どなたか、知恵を貸して頂けないでしょうか。 よろしくお願い致します。