• 締切済み

log(x) が連続 であることの証明

log(x) が x=a で連続 であることの証明がわかりません。 任意の正の数εに対して、適当な正の数δをとると |x - a|<δ ⇒ |logx - loga|<ε  任意の正の数εに対して δ=a(1-e^(-ε)) δのとり方はわかりましたが、ここから先がわかりません。どなたか教えてください。  

みんなの回答

  • shkwta
  • ベストアンサー率52% (966/1825)
回答No.1

(e^ε-1)^2≧0 ⇔e^(2ε) + 1≧2 e^ε ⇔e^ε + e^(-ε)≧2 ⇔e^ε - 1 ≧ 1 - e^(-ε) より、δ=a(1 - e^(-ε)) ⇒ δ≦a(e^ε - 1) あとは、 x≧a かつ x-a<a(e^ε - 1) x<a かつ a-x<a(1 - e^(-ε)) にわけて証明すればよいと思います。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • logの証明問題

    logx=(1-x^2)/(1+x^2)の正の解がx=1だけしかないことを証明せよ。 という問題です。 この問題は 「logx=(1-x^2)/(1+x^2) e^(1-x^2)/(1+x^2)=x (1-x^2)/(1+x^2)=0を解くと正の解はx=1 e^0=1より 上式の正の解はx=1しか成り立たない。」 と解いてみたのですが、これでいいのでしょうか? 証明問題は苦手なのでどなたか教えてください。

  • 数学の質問です

    aを正の整数とする。不等式a^x>=x^aがx>=aである任意のxに対して成り立つようなaの範囲をを求めよ。という問題なのですが、まず対数をとって(1/a)loga>=logx/xとして右辺のlogx/xの最大値が1/eだから(1/a)loga>=1/eをといてa^(1/a)>=e^(1/e)が答えだと思ったのですが解答はa>=eでした。 どこか間違っていますか?お願いします。

  • (1)aを1より大きい実数とする。0以上の任意の実数xに対して、次の不

    (1)aを1より大きい実数とする。0以上の任意の実数xに対して、次の不等式が成り立つことを証明せよ。   log2+(x/2)loga≦log(1+a^x)≦log2+(x/2)loga+{(x^2)/8}(loga)^2 (ただし対数は自然対数) (2)n=1,2,3,…に対してa[n]=[{1+3^(1/n)}/2]とおく。(1)の不等式を用いて極限lim[n→∞]a[n]を求めよ。 (1)の(第一式)≦(第二式)は証明できたのですが、(第二式)≦(第三式)の証明の仕方が分かりません。よろしくお願いします。

  • f(x)=1+logx+2√x>0の証明に関して

    f(x)=1+logx+2√x>0の証明に関して 不明な箇所が2点あります。宜しくお願いします。 取りあえず微分します。 f'(x)=(1/x)-(1/4x√x) f(x)の極値を求めます。 (1/x)-(1/4x√x)=0 (1/x)=(1/4x√x) 1=1/4√x 4√x=1 √x=1/4 x=1/16 f(1/16)=3+log(1/16) =3-log16 =3-4log2 3-4log2>0なのでf(x)=1+logx+2√x>0となる。 以下質問です。 3-4log2が最小値であるのはf(x)=1+logx+2√x>0からして自明だと 思うのですが、最小値であることを示す必要はありますか? 又、3-4log2>0は正になるのですが、ここにも何かしらの説明は必要でしょうか? お手数をお掛け致します。

  • 一様連続の証明について

    疑問点を整理しての再質問です。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法です。 ここでは部分列の極限値(x、y)においてのみ |f(x)-f(y)|=0となり、|f(x)-f(y)|≧ε>0に矛盾する、として 証明を完了しているのですが、 それでは(※)を満たすx'、y'が“一つも存在しない”ことにはならないので証明としておかしいような気がするのですが、 どうでしょうか? よろしくお願いします。

  • 関数の連続の証明

    logxがx>0で連続であることをε-δ論法で証明せよという問題が分りません。どうか教えてください。

  • 一様連続の証明について

    度々すみません。 またお世話になります。よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ>0が存在して、|x-y|<δを満たす区間内の 全てのx、yに対し、|f(x)ーf(y)|<εが成り立つ。」 ということですので、 背理法でこの定理を証明する場合は 「あるε>0において、どのようなδ>0に対しても|x'-y'|<δ かつ|f(x')-f(y')|≧ε x'、y'∈〔a,b〕となるx'、y'が存在する。」・・・(※) ことの矛盾を導けばよいのですが、 ここで以下のサイトの命題4、1を見てください。 http://www.google.co.jp/search?hl=ja&safe=off&q=%E4%BA%95%E4%B8%8A%E6%B7%B3%E3%80%80%E4%B8%AD%E9%96%93%E8%A9%A6%E9%A8%93%E3%80%80%E8%AC%9B%E7%BE%A9%E5%86%85%E5%AE%B9%E3%80%80%E6%96%B0%E3%81%97%E3%81%84%E5%B9%B4&btnG=%E6%A4%9C%E7%B4%A2&lr= これは私が勉強している参考書「微分積分学 難波誠著」と同じ証明方法ですが、 見て分かる通り、この証明は部分列や「ボルツァーノ・ワイヤストラスの定理」を用いたりしてとても複雑です。 ですが私には部分列などを使う必要性が理解できません。 私の考えた証明はこうです。 『あるε>0に対して、δ>0を0に近付けていくと |xーy|<δにおいて|x-y|も0に近づく。 この時閉区間〔a,b〕にある点cにx、yが共に近づく と考えてよい。(δ→0でx、y→c) そしてこの時 |f(x)ーf(y)|→|f(c)ーf(c)|=0 (δ→0) これは|f(x)ーf(y)|≧ε>0 に反するので題意の定理は証明された。』 ずいぶん簡単ですが、 おそらくどこかに誤りがあるのだと思います。 どこに誤りがあるか分かる方、いらっしゃいましたら ご指摘よろしくお願いします。

  • logについて

    logについて (logは自然対数です) logxがx=0で定義されないのは、グラフより分かるのですが、 lim[x→+0]logx,lim[x→-0]log-xは-∞に発散すると言うのは合っているでしょうか? また、対数において対数の底が、a<0,a≠1の場合の理由はなぜでしょ うか? a=0の場合の理由はなんとなくですが理解できます。 logx=y→x=a^yとなりa=0の場合はx=a^yが成り立たないからと認識しております。 つまり定義されないと認識しています。 a=1の場合の理由がいまいち分かりません・・・ logx=y→x=1^yとなりa=1の場合は成り立つのですが、結局yがどんな数でもx=1 となるので対数を用いる意味が無いからということなのでしょうか?

  • logX+log(X+2)-1/2log9=0これを解いてください!

    logX+log(X+2)-1/2log9=0 解答を見ると、logをとった時に、 X(X+2)=9の1/2乗 Xの2乗+2X-3=0・・・・と普通の2次方程式までつながってるのですが、 これ正しいんですか?? logX+log(X+2)がX(X+2)になってるなら、 -1/2log9も割り算になって、 X(X+2)/3=0になりませんか?? これにならないとしても、logをとっただけで、 X+(X+2)-3=0になると思うのですが・・・ 僕のどこが間違っていますか?? 明日テストでとても困っています。 お願いします。

  • 逆関数・合成関数

    逆関数、合成関数の観点から次の式を説明せよ。 (1) log e^x=x (2) e^(logx)=x やってみました。 (2) y=a^x(-∞<x<∞)とする。   xについて解くとx=loga y (y>0) ここでx,yをいれかえるとy=loga x(x>0) つまり、y=a^x(a>0,a≠1)とy=loga x(a>0,a≠1)は   互いに逆関数の関係にある。   よって、a^(logy)=y(y>0) a=eのとき、e^(logy)=y yにxを代入してe^(logx)=x こんなんでどうでしょうか???それと(1)はどうすれば良いのでしょう?