選択公理についての疑問

このQ&Aのポイント
  • 選択公理とは、添字集合Λ上の添字付き集合族が空集合ではないことを示すものです。
  • また、直積集合の定義から、直積集合自体が空でないことは当たり前といえます。
  • したがって、選択公理は直積集合の定義から導かれるものであり、当たり前といえるでしょう。
回答を見る
  • ベストアンサー

選択公理について

選択公理が当たり前すぎてよくわからなくなりました。 まず、ここでの選択公理は、添字集合Λ上の添字付き集合族(A_λ)_[λ∈Λ]が、どのλ∈ΛについてもA_λは空集合ではないとき、この添字付き集合族の直積集合は空集合ではない。記号では、 Π_[λ∈Λ] A_λ=φ と言う事とします。 しかし直積集合は、 Π_[λ∈Λ] A_λ ={(a_λ)_[λ∈Λ] | a_λ∈A_λ, λ∈Λ} と定義されるので、そもそも(a_λ)_[λ∈Λ]は、Π_[λ∈Λ] A_λに属すので空でないのは当たり前なのではないでしょうか? つまり、直積集合の定義自体によって、選択公理はすでに言えてるのではないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.4

もうちょっと書いておくと、有限個の集合の直積なら、例えば数学的帰納法とかを使って定義できるかも知れない。 問題は無限個の集合の直積だと、(添字集合の『濃度』と自然数全体の集合の『濃度』との大小が一般に不明なので、要は添字集合が無限集合なので)数学的帰納法では定義出来ない。その状況でも直積集合を『厳密に』定義するにはどうするか?という事。 結局、あなたが2つの集合A,Bの直積が 「A×B={(a,b)| a∈A,b∈B}と定義される事と同様にΠ_[λ∈Λ] A_λを考えました。」 と「ナイーブ」に考えていることを、厳密化しないといけない。

その他の回答 (3)

回答No.3

うーん、つまり 「A×B={(a,b)| a∈A,b∈B}と定義される事と同様にΠ_[λ∈Λ] A_λを定義する」 とその『同様に定義』というのを、『きちんと』記述出来ますか? 例えば、A×B×C, A×B×C×D とかいう風に有限個の集合の積なら『同様に』定義できるかもしれない。問題は例えばΛが無限集合の時に、その『同様に』定義するというのを『厳密に』書けますか?ということ。

回答No.2

もうちょっと書いておくと、添字付き集合族も、直積集合の各要素も何らかの『写像』ですが、その写像がどういうものか、きちんと書けますか?という事。

Lyhxhjeje
質問者

お礼

回答ありがとうございます。 添字付き集合族は、添字集合から集合の集合への写像でλ→A_λと対応させる(λに対応する集合をA_λと表記する)と思います。 「直積集合の各要素も何らかの『写像』ですが」、とありますが、これは直積集合を普遍性によって定義するという事でしょうか? 2つの集合A,Bの直積が A×B={(a,b)| a∈A,b∈B} と定義される事と同様に Π_[λ∈Λ] A_λ を考えました。

回答No.1

取り敢えず ◯ 添字集合Λ上の添字付き集合族(A_λ)_[λ∈Λ] ◯ (a_λ)_[λ∈Λ] ってどんなもの(定義)でしたっけ?この辺を『きちんと』書けますか?

関連するQ&A

  • 選択公理は循環論法的ではないですか?

    集合論における選択公理は,現行の表現のままでは, 循環論法的主張になってしまっているのではないでしょうか? つまり,それぞれの集合族について選択関数が選べると言っても, 選択関数は沢山あるから,1つ1つの集合族についてどの選択関数を選んだらよいか, 選択しなければいけないのではなでしょうか? すると,選択関数を選択するのに, また選択公理を使って選択しなけばいけないが, それを選択するのにまた選択公理を使って・・・??! これでは,いつまで経っても選べない! だから,選択公理は, すべての集合から成る領域において定義された選択関数の存在 を主張しないといけないのではなでしょうか? 従って,公理の表現を次のように改めないといけないと思うのですが・・・ ∃f:V-{φ} → V ,∀a∈V ,∀x∈a ,x≠φ ⇒ f(x)∈x (f:選択関数,V:すべての集合(族)からなる領域,φ:空集合,a:集合族,x:集合) 「強い選択公理」とか「弱い選択公理?」とかもあるようですが、 上記の点はどうなのでしょうか?

  • 選択公理

    A,Bを集合とする。 〈1〉AからBへの入射(単射)があれば、BからAへの上射があることを示せ。ただしAは空でない。 〈2〉選択公理のもとで、AからBへの上射(全射)があれば、BからAへの入射があることを示せ。 おねがいします!

  • 選択公理を使った証明。

    以下の証明を詳しく教えてください。 fをAからBの写像とする。 fが全射であるとき、またそのときに限りf○s=I_Bとなるような写像s:B→Aが存在する。 fが全射であると仮定する。 すると、Bのどの元bに大してもその原像f-1(b)は空でない したがって、f-1(b)=A_b(bはBの要素)とおけば、A_bは空でない集合からなる集合族となる。ゆえに選択公理より、Bで定義された写像sですべてのBの要素bに対してs(b)=A_bとなるものが存在する。s(b)⊂ A_b ⊂ Aであるから、このsに対してf○s=I_bが成り立つ。 これは、Aを集合系だと仮定してますよね。 この証明を詳しく解説してくださるとうれしいです。

  • ZFCが一番少ない公理系ではない?

    数学基礎論の本でZFCは一番少ない公理系(9つ) 外延性公理, 空集合の公理, 対の公理, 合併集合の公理, 無限集合の公理, べき集合の公理, 置換公理, 正則性の公理, 選択公理 と見かけましたが ZFCは図式は一つずつだが無限個の公理から成り立っている公理系だと聞きました。 もし,無限個だとすると一番少ない公理系で無限個とは意味不明だと思います。 どのように解釈したらいいでしょうか? それと公理図式と公理の違いは何なのでしょうか?

  • σ-加法族の公理に対する期待とは?

    こんにちは。早速ですが、ルベーグ積分を勉強しています。 そこで可測集合を定義するために、σ-加法族の公理を考えていますが(加算和で閉じる、補集合で閉じるなど) そもそも、これは何を狙ってこの公理を考えているのでしょうか。 この公理から、ボレル集合など理論が展開されていくのは分かるのですが、いまいち狙いが掴めません。直感的に"面積がみたすべき性質"を期待しているということでしょうか。

  • 集合論の空集合の公理で

    お世話になります。 「Q&A数学基礎論入門」(久間栄道 著)を読んでいたら次のようにありました。 無限公理と分出公理があれば空集合の公理は必要ないので,現在では空集合の公理を省いてある体系もある。具体的には{x∈ω'|¬(x=x)}とすれば,これは無限公理と分出公理から存在が言えるが、これはφそのものである。 無限公理は次のように書いてあります。   ∃a((φ∈a)∧∀x∈a((x∪{x}∈a))   このaをω'とする。 疑問…何だか循環論のような気がします。 質問…空集合の公理を採用しない体系での無限公理はどのように書くのですか? どうか教えて下さい。 当方素人ですので、分かり易くお願いいたします。

  • 直積と関数について

    選択公理の解説などにおいて直積の定義がありますが、 ΠSλ(λ∈Λ)={f|f:Λ→∪Sλ fλ∈Sλ} とするのが多いと思います。(つまりΛから∪Sλへの関数の内、ある条件を満たすもの全体) しかし、私は関数というのは二項関係などと同じように直積の部分集合として定義されるものと考えていました。(上の例では、fはΛ×∪Sλの部分集合) そのため、関数と直積をどちらから定義すればよいのか混乱しています。 おそらく、原因は私が、純集合論的な立場から直積、関数も一つの集合として定義しようとしているにもかかわらず、集合の記法を厳密に決めていないため(一階述語論理の言語と=、∈以外のものを勝手に使用している)だと感じるのですが、この理解自体どこかおかしなところがあるでしょうか? また、見通しのよい考え方、捉え方等教えていただければ幸いです。この方面に詳しい方々、時間に余裕があればお答えください、よろしくお願いします。

  • 圏論を公理的に扱うには

    圏のはじめの定義において対象のcollection、射のcollectionという若干曖昧な言い方がなされるのが普通だと思います。 圏の対象、set全体やgroup全体はproper classになり一階述語論理で書かれた集合論の公理では記述できないことが書籍などでは書かれており、また圏論の解説などで量化記号(∀∃など)を使っているのも見ません。 しかし圏論を公理的に定式化できなければそれも問題だと思うので、公理的な扱いができるとも思っているのですが、それはどういうように行われているのでしょう。 また集合論が数学の基礎づけになっているというのと同じような意味で、圏論がいろいろな数学を展開する場を与えてくれると考えられると感じるのですが、一つ一つの具体的な圏、Set、Group、Top、Htpyなどは圏論全体の枠組みの中でどのようにして導入されるのでしょうか。圏の具体例として急に外から与えられているようにみえるのですが...(たとえば、群全体なるものがどこかで想定されていて圏の定義を満たしていることは確認されるように記述されているように感じます) おそらく公理的な集合論と圏論との関係がわかっていないための混乱なのですが、圏論はどのように形式的に定まっているものなのでしょうか。

  • 集合論 直積集合の定義式

    直積集合の定義を,冪(ベキ)集合を用いているものがあります. 直積集合自体の意味は,たとえば,X×Yで,デカルト平面を想像すればわかります. その定義式は, 集合X,Yについて { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } ただし,B(・)は,冪集合を表す記号. また,U{・}は,和集合を作る記号で,A U B U C U・・と同じです. 冪集合でまた冪集合を作るような記号らへんのところも特に分かりづらいです.

  • 公理的集合論で、ある命題を証明?

    選択公理を導入すると、下記の命題(1)が証明できるそうです。(Wikipediaの選択公理の記述) 命題(1):任意の二つの集合 A,B について、A から B への単射があるか、または B から A への単射がある。 素人丸出しの例題で恐縮ですが、上記の命題(1)で、任意の集合として以下を選びます。 集合A:原子の名前を要素とする集合とする。 集合B:地球上の国名を要素とする集合とする。 この場合、AからBへの単射もないし、BからAへの単射もなく、命題(1)が偽であるように思えます。 選択公理を用いると証明できるとされる命題(1)は、何を意味しているのでしょうか。 数学の素人にもわかる簡単な例で命題(1)の意味をご説明いただけると助かります。