• 締切済み

積分の計算をお願いします。

qは4元ベクトルで、 q=(q0, p1, p2, p3) , p=(p1, p2, p3) とする。このとき ∫d^4q/(2π)^4 (i/(q0^2-p1^2-p2^2-p3^2+iε)e^(-i(q0x0-p1x1-p2x2-p3x3) =∫d^3q/(2π)^3(1/2|p|)e^(-i(q0x0-p1x1-p2x2-p3x3) を示してください。

みんなの回答

回答No.1

以下のようなものを使ってみました? >数式をカメラで写すと答えがわかる『PhotoMath』が便利すぎ! https://www.appbank.net/2015/06/10/iphone-application/1040579.php >【超便利】微分積分計算をしてくれるWebアプリ https://science-log.com/%E6%95%B0%E5%AD%A6/%E3%80%90%E8%B6%85%E4%BE%BF%E5%88%A9%E3%80%91%E5%BE%AE%E5%88%86%E7%A9%8D%E5%88%86%E8%A8%88%E7%AE%97%E3%82%92%E3%81%97%E3%81%A6%E3%81%8F%E3%82%8C%E3%82%8Bweb%E3%82%A2%E3%83%97%E3%83%AA/

sonofajisai
質問者

お礼

photomathは答えを出してくれませんでした。 Integral Calculator は、左辺の積分の外にlim ε↓0をつけなければいけないので、計算できませんでした。

sonofajisai
質問者

補足

右辺は ∫d^3p/(2π)^3(1/2|p|)e^(-i(q0x0-p1x1-p2x2-p3x3) の間違いでした。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 高校数学の行列です

    A=(a,b,c,d)(行列で順に左上、右上、左下、右下の順)(a,b,c,d∈R),A≠kE(k∈R),A≠Oとする (1)Aの固有値λと固有ベクトル↑xが存在する条件はλが固有方程式λ^2-(a+d)λ+ad-bc=0(1)の解であることを証明せよ (2)(1)が異なる実数の固有値(λ=)α、βをもつとき、それらに対する固有ベクトル (↑x=)↑x1,↑x2は1次独立であることを証明せよ (3)特にb=cのとき、(2)において↑x1⊥↑x2であることを証明せよ (1)はA↑x=λ↑x,↑x≠↑0(⇔A↑x//↑x(広義平行),↑x≠0) ⇔(A-λE)↑x=↑0,↑x≠↑0 ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) ⇔det(A-λE)=(a-λ)(d-λ)-bc=0 ⇔λ^2-(a+d)λ+ad-bc=0 となっていたのですが ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0)ここまでは分かりましたが、 この次の⇔det(A-λE)=(a-λ)(d-λ)-bc=0これは何で言えるんですか? (x,y)は0では無いですが、行列って互いに0でなくても掛けたら0になることはありますよね、それに0になったとしてもdetも0になるんですか? (2),(3)は解説を読むと分かって参考のようにして ケーリーハミルトンの定理 A^2-(α+β)A+αβE=Oが成り立つから↑0でない任意の平面ベクトル↑xに対して A(A↑x-β↑x)=α(A↑x-β↑x) A(A↑x-α↑x)=β(A↑x-α↑x) よって(A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2とあったのですが (A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2が何故成り立つのか分かりません その後すなわち行列(A-βE),(A-αE)によって任意のベクトル↑xはそれぞれα、 βの固有ベクトル↑x1,↑x2にへ行くなベクトルに変換されるとあったのですが、これも何の事か良くわからないのですが、詳しい説明をよろしくお願いします (注)として行列Aが固有値α、β(α≠β)と固有ベクトル↑x1,↑x2をもつ場合、平面上の任意のベクトル↑xを↑x1,↑x2に平行なそれぞれのベクトル↑p,↑qに直和分解して↑x=↑p+↑qとする  このとき、行列P=1/(α-β)×(A-βE),Q=1/(β-α)×(A-αE)はそれぞれ↑xを↑x1,↑x2上へ平行射影する1次変換である  すなわち P↑x=↑p,Q↑x=↑q 特に行列Aが対称行列のときP,Qは正射影の行列になるとあるのですが ↑qに直和分解して↑x=↑p+↑qとする までは分かりますが、この後の説明 がさっぱりわかりません、詳しくお願いします

  • 確率変数(たぶん初歩的な問題です)

    【問題】 離散型確率変数X,Yの分布がP(X=xi)=pi,P(Y=yi)=qi (i=1,2)であるとき,E(X+Y)=E(X)+E(Y)を示しなさい. 【自分なりの答え】 E(X+Y)=(x1+y1)p1q1+(x1+y2)p1q2+(x2+y1)p2q1+(x2+y2)p2q2     =x1p1(q1+q2)+x2p2(q1+q2)+y1q1(p1+p2)+y2q2(p1+p2)     =x1p1+x2p2+y1q1+y2q2     =Σ(i=1~2)xipi+Σ(i=1~2)yiqi     =E(X)+E(Y) と自分なりに考えて証明してみたのですが,これではXとYが独立な確率変数の場合の証明となってしまいます. XとYが独立な確率変数ではなくてもE(X+Y)=E(X)+E(Y)が成立するはずなのですが、どう証明すればよいのでしょうか? アドバイスをいただけないでしょうか?お願いします。

  • 広義積分の問題を教えて下さい

    次の問題の答えを教えて下さい。 1.次の広義積分を求めよ。ただし、r,kは正の定数とする。 (a)∫(rから∞)dx/x^2 (b)∫(0からr)dx/√r-x (c)∫(-∞から0)e^(kx)dx (d)∫(0から1)dx/x^2の三乗根 (e)∫(1から∞)dx/x(1+x) (f)∫(0から1)√(x/1-x)dx 2.次の広義積分を求めよ。 (a)∫(-1から1)dx/x (b)∫(-1から1)dx/x^2 (c)∫(-∞から∞)dx/x^2+1 3.広義積分I=∫(0からπ/2)log(sinx)dxの値を、次のようにして求めよ。 (a) I=∫(π/2からπ)log(sinx)dx=∫(0からπ/2)log(cosx)dxが成り立つことを示せ。 (b)x=2tとおいて2I=∫(0からπ)log(sinx)dxの値を計算することによって、I=-(π/2)log2であることを示せ。 4.s>0として、ガンマ巻数Γ(s)=∫(0から∞)e^(-x)x^(s-1)dxについて式Γ(s+1)=sΓ(s)が成り立つことを示せ。 5.p>0,q>0として、ベータ関数Β(p,q)=∫(0から1)x^(p-1)(1-x)^(q-1)dxについて式Β(p,q)が成り立つことを示せ。 お願いします。

  • 4次方程式の4つの解α_iに対して,

    f(x)=x^4+px^2+q^x+r=0 の4つの解 α_i (i=1,2,3,4)に対して, β_1=(α_1+α_2)(α_3+α_4), β_2=(α_1+α_3)(α_2+α_4), β_3=(α_1+α_4)(α_2+α_3) γ_1=(β_1)^2(β_2)+(β_2)^2(β_3)+(β_3)^2(β_1), γ_2=(β_1)(β_2)^2+(β_2)(β_3)^2+(β_3)(β_1)^2 とおくとき,次の問いに答えよ. (1) β_1, β_2, β_3 を3つの解にもち,x^3 の係数が1である3次方程式を g(x)=0 とする.g(x) を求めよ. (答)g(x)=x^3-2px^2+(p^2-4r)x+q^2 (2) γ_1, γ_2 を2つの解にもち,x^2 の係数が1である2次方程式を h(x)=0 とする.h(x) を求めよ. (答)h(x)=x^2+(-2p^3+8pr-3q^2)x+p^6-12p^4r+4p^3q^2+48p^2r^2-48pq^2r-64r^3+9q^4 (3) f(x)=0,g(x)=0,h(x)=0 の判別式をそれぞれ d(f),d(g),d(h) とおくとき,    d(f)=d(g)=d(h) を証明せよ. ただし,判別式とは解の差積の平方で,例えば,d(g)=(β_1-β_2)^2(β_2-β_3)^2(β_3-β_1)^2 である. (1),(2)は解と係数の関係を用いて、地道に求められました。 (3)ができた方は教えていただけないでしょうか。 また、β_iやγ_iを上記のようにおいた根拠をご存知の方はどうか教えてください。

  • 線形空間の問題です。

    線形空間の問題です。 p, q∈R, X, Y⊂R^5 X = [a,b,c,d,e]^t(←転置) s.t. 2a +(q-2)b -4c -(p+3)d +2e=0 (p+1)b +2qc +(p+1)d +qe=0 6a +(p+3q-5)b +(q-12)c -(2q+8)d +(q+6)e=0 Y = [a,b,c,d,e]^t(←転置) s.t. 2a +(p+q-1)b +(q-4)c -2d +(q+2)e =0 +p(p+1)b +qc +p(p+1)d +p(p+1)e =0 とするとき、XとYが線形空間として同型になるための p,qに関する必要十分条件を求めよ。

  • 3×3行列の固有値重解時の対角化の方法

    行列A= | 1 2 2 | | 0 2 1 | |-1 2 2 | とします。 固有値、固有ベクトルを求め、 正則行列Pを用いて対角化する時の手順ですが、 何度やっても最終的に対角化できません。 おそらく固有ベクトル・正則行列の求め方に問題があるのだと思うのですが、 問題点を指摘して頂けないでしょうか? 解答が手元に無く、皆さんに助けを求めさせて頂きました。 【固有値】 |A-λE|=0として (λ-1)(λ-2)^2=0 固有値λ=1, 2(重解) 【固有ベクトル】 (A-λE)X=0より (i)λ=1の時 |0 2 2||X1| |0 1 1||X2|=0 |-1 2 1||X3| ∴{X2+X3=0  {-X1+2X2+X3=0 X3=kとおくと X2=-k,X1=-k ∴固有ベクトル   |-1| p1=k|-1|   | 1| (ii)λ=2(重解)の時 |-1 2 2||X1| | 0 0 1||X2|=0 |-1 2 0||X3| ∴{-X1+X2+X3=0  {X3=0  {-X1+2X2=0 X3=X1-X2 X1=s,X2=tとおくと X3=s-t ∴固有ベクトル   | 1 | |0| p2=s| 0 |+t|1|  |0.5| |1|より 直行行列   |-1 1 0| P= |-1 0 1|   | 1 0.5 1| とする。 また、 直交行列の逆行列    |-1 -2 2| P-1= 1/5| 4 -2 2|    |-1 3 2| これらを用いて計算すると     |1 -6 -4| P-1AP= |0 14 36|     |0 1 26| となり、途方にくれてしまいます。 |1 0 0| |0 2 0| |0 0 2|になってくれません。 どこで間違いをおしているのでしょうか? 教えて下さい。

  • 積分の計算がわかりません。

    積分の計算がわかりません。 E=∫e^(-Aτ)B[e^(-Aτ)B]^T dτ このとき任意のXに対して、 (X^T)EX=X^T∫e^(-Aτ)B[e^(-Aτ)B]^T dτ・X (1) =∫(X^T)e^(-Aτ)B[e^(-Aτ)B]^TX dτ (2) =∫[(X^T)e^(-Aτ)B][(X^T)e^(-Aτ)B]^T dτ (3) =∫[(X^T)e^(-Aτ)B]^2 dτ (4) (2)から(3)と(3)から(4)の間の計算がわかりません わかりやすく教えてください お願いします

  • Σの計算についてと確率の独立性について

    最近,統計の勉強をしていて,混乱してわけがわからなくなっているので, 確認の意味も含め質問させてください. 1. いま,データx={x1,x2,...,xn}の各xに対する確率変数をXiとする. このとき,    Σ[1/p(Xi)]    from i=1 to n は、    Σ[1/p(Xi)] = n   ・・・ @ となる?みたいなのですが,なぜなのでしょうか? たとえば,n=2で,p(X1)=1/2,p(X2)=1/2としたら,  Σ[1/p(Xi)]={1/p(X1)} + {1/p(X2)}        = 2 + 2        = 4 となりますが,@では,いま,n=2なのでΣ[1/p(Xi)]=2であり,4≠2となり @のようになるとはいえないのではないかと混乱しています。おそらく@は,  Σ[1/p(Xi)]=(Σ1)/(Σp(Xi))= n と変形しているのだと思いますが,自分の例から@のように変形できる訳が分かりません。 もしかしたら,自分の例がおかしいのかもしれませんが・・・。 2. 統計学でよく,「データはi.i.dである」という仮定をおいて解析が行われています。 データが独立で同じ確率分布に従うときをi.i.d と呼ぶと記憶しているのですが, 「独立である」という項目は,なぜ条件として必要なのでしょうか? 独立というと,私は,P(x1,x2)=P(x1)*P(x2) とできるということしか知らないので, データの独立性がないと計算が大変になるだろうという風にしかみれないのですが, データをばらばらに取り出す(独立?)場合と一度にまとめて取り出す(独立でない?)場合が解析に何の影響を及ぼすのでしょうか? 式は覚えていてもそれ自体が何の意味をもつのかがまったく分かっていないので、意味合いを教えていただきたいです。 回答よろしくお願いします。

  • 確率変数について

    【問題】 離散型確率変数X,Yの分布がP(X = xi) = pi, P(Y = yi) = qi (i = 1,2)であるとき, E(X + Y) = E(X) + E(Y)を示せ. 【自分なりの解答】 P(X = xi and Y = yj) = rijとする. ゆえにpi = ri1 + ri2 かつ, qi = r1i + r2iである. E(X + Y) = (x1 + y1)r11 + (x1 + y2)r12 = (x2 + y1)r21 + (x2 + y2)r22 = x1(r11 + r12) + x2(r21 + r22) = y1(r11 + r21) + y2(r12 + r22) = x1p1 + x2p2 + y1q1 + y2q2 = (x1p1 + x2p2) + (y1q1 + y2q2) = E(X) + E(Y) 【質問】 この解答は P(X = xi and Y = yj) = rijと仮定した時に, pi = ri1 + ri2かつ, qi = r1i + r2iであることを大前提にして問題を解いています.でもこの大前提がなぜ成立するのかが,上手に表現(証明)できません.何かアドバイスをいただけないでしょうか?よろしくお願いします.

  • 一次結合について

    ベクトルa≡(a1,a2),ベクトルb≡(b1,b2)である時,任意のベクトルx≡(x1,x2)はベクトルa,bの一次結合で一意に表せる事を示せ。(正し,幾何学的な解答は無効) という問題において,以下のように解いて見たんですが x=pa+qb,x=p'a+q'b と2通りで表されるとすると pa+qb=p'a+q'b (p-p')a+(q-q')b=0(0ベクトル) a,bは一次独立なのでa,bの係数は0(0以外はa,bが一次従属になるので) つまり p-p'=0,q-q'=0 p=p',q=q' となるので,任意のベクトルx≡(x1,x2)はベクトルa,bの一次結合であると言える。 となりました。申し訳ありませんが解答・解説をお願いします。

このQ&Aのポイント
  • プリンターの印刷が途中で停止するトラブルについてお困りですか?解決方法をご紹介します。
  • MFC-J907DNをお使いの方で、急に印刷が途中までしかできなくなった場合の対処方法を説明します。
  • プリンターの初期設定やPC側の再ダウンロードを試しても問題が解決しない場合、どのように対応すればよいかご紹介します。
回答を見る