行列の固有値と固有ベクトルの条件とは?

このQ&Aのポイント
  • 行列Aの固有値と固有ベクトルについての条件や証明方法をまとめてみました。
  • 特に異なる実数の固有値を持つ場合、それに対する固有ベクトルは1次独立であることを証明します。
  • また、特定の条件下で固有ベクトルが直交することも証明します。さらに、ケーリーハミルトンの定理や正射影の行列についても解説します。
回答を見る
  • ベストアンサー

高校数学の行列です

A=(a,b,c,d)(行列で順に左上、右上、左下、右下の順)(a,b,c,d∈R),A≠kE(k∈R),A≠Oとする (1)Aの固有値λと固有ベクトル↑xが存在する条件はλが固有方程式λ^2-(a+d)λ+ad-bc=0(1)の解であることを証明せよ (2)(1)が異なる実数の固有値(λ=)α、βをもつとき、それらに対する固有ベクトル (↑x=)↑x1,↑x2は1次独立であることを証明せよ (3)特にb=cのとき、(2)において↑x1⊥↑x2であることを証明せよ (1)はA↑x=λ↑x,↑x≠↑0(⇔A↑x//↑x(広義平行),↑x≠0) ⇔(A-λE)↑x=↑0,↑x≠↑0 ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) ⇔det(A-λE)=(a-λ)(d-λ)-bc=0 ⇔λ^2-(a+d)λ+ad-bc=0 となっていたのですが ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0)ここまでは分かりましたが、 この次の⇔det(A-λE)=(a-λ)(d-λ)-bc=0これは何で言えるんですか? (x,y)は0では無いですが、行列って互いに0でなくても掛けたら0になることはありますよね、それに0になったとしてもdetも0になるんですか? (2),(3)は解説を読むと分かって参考のようにして ケーリーハミルトンの定理 A^2-(α+β)A+αβE=Oが成り立つから↑0でない任意の平面ベクトル↑xに対して A(A↑x-β↑x)=α(A↑x-β↑x) A(A↑x-α↑x)=β(A↑x-α↑x) よって(A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2とあったのですが (A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2が何故成り立つのか分かりません その後すなわち行列(A-βE),(A-αE)によって任意のベクトル↑xはそれぞれα、 βの固有ベクトル↑x1,↑x2にへ行くなベクトルに変換されるとあったのですが、これも何の事か良くわからないのですが、詳しい説明をよろしくお願いします (注)として行列Aが固有値α、β(α≠β)と固有ベクトル↑x1,↑x2をもつ場合、平面上の任意のベクトル↑xを↑x1,↑x2に平行なそれぞれのベクトル↑p,↑qに直和分解して↑x=↑p+↑qとする  このとき、行列P=1/(α-β)×(A-βE),Q=1/(β-α)×(A-αE)はそれぞれ↑xを↑x1,↑x2上へ平行射影する1次変換である  すなわち P↑x=↑p,Q↑x=↑q 特に行列Aが対称行列のときP,Qは正射影の行列になるとあるのですが ↑qに直和分解して↑x=↑p+↑qとする までは分かりますが、この後の説明 がさっぱりわかりません、詳しくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

そう. (2) は「固有ベクトルが独立じゃない」ことを仮定して背理法に走った方が簡単じゃないかなぁ. (3) は「垂直」をどう示せばいいかだけの勝負.

arutemawepon
質問者

お礼

御返答ありがとうございます

arutemawepon
質問者

補足

>「固有ベクトルが独立じゃない」ことを仮定して背理法に走>った方が簡単じゃないかなぁ. (2),(3)の問題の解説は分かったんです、今回はこの解法を参考にして参照みたいな所と(注)を理解したいので、疑問点の方よろしくお願いします

その他の回答 (2)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

へ? だって, 逆行列持ってたら (a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) が成り立たんでしょ?

arutemawepon
質問者

お礼

御返答ありがとうございます

arutemawepon
質問者

補足

>(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) >が成り立たんでしょ? 逆行列を持っていたら両辺に左から (a-λ,b,c,d-λ)(インバース)を掛けたら(x,y)=(0,0)になるんじゃないですか、(x,y)≠(0,0)だから持たないってことですか?

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

とりあえず (1) だけ: det A ≠ 0 ⇔ A は逆行列を持つ

arutemawepon
質問者

お礼

ご返答ありがとうございます

arutemawepon
質問者

補足

>det A ≠ 0 ⇔ A は逆行列を持つ それは分かりますが (a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) からdet(A-λE)=(a-λ)(d-λ)-bc=0が何故言えるんですか?

関連するQ&A

  • 行列の問題を教えてください。

    行列の問題で解けなくて困っています. よろしければ教えていただけないでしょうか。 行列に関係する以下の問い(1)~(4)に答えよ。 (1)2行2列の行列をAとする。さらにその固有値をλ1,λ2(λ1≠λ2)とし、それぞれに付随する固有ベクトルを(x1,y1)と(x2,y2)とする。 P≡ |x1 x2| |y1 y2| と置くと、固有値と固有ベクトルの定義から AP=P|λ1 0| |0 λ2| と書ける。ここから、 A=P|λ1 0|P^-1 | 0 λ2| および A^n=P|λ1 0|^nP^-1 |0 λ2| となることを示せ。ここでP^-1はPの逆行列、nは正の整数、A^nは行列Aのn乗を示す。 (2)固有値が1と-1である2行2列の行列Bがある。この行列のn乗B^nを求めよ。さらにその逆行列(B^n)^-1を求めよ。B^nと(B^n)^-1の両方において、nが偶数と奇数で答えが異なるので、両者を区別して答えを示せ。必要なら2つの正則な正方行列B1、B2の積の逆行列が (B1B2)^-1=B2^-1B1^-1 となることを使え。 (3)固有値が1と-1で、それぞれに付随する固有ベクトルが(2,1)と(1,1)である2行2列の行列Cを求めよ。 (4)xとyを未知数とする次の連立方程式 |3 -4|^21 |x| =|10| |2 -3| |y| |7| を解け。ここで |3 -4|^21 |2 -3| は行列 |3 -4| |2 -3| の21乗を表す。 という問題です。 計算過程、解答のほうをどうかよろしくお願いいたします。

  • 数学の回答がなくて困っております。

    息子と勉強しているところです。 記述形式の回答を頂けると大変ありがたいです。 お手数おかけいたします。 なお2行・3列の行列を【a b c ; d e f】、絶対値Aを|A|と表記することといたします。 行列A=【a b ; c d】(ad-bc<0)で表される1次変換をfとする。楕円C:{(x^2)/9}+{(y^2)/4}=1上の点P(3cosθ,2sinθ){0≦θ≦(π/2)}が、fによって、楕円C上の点に移されるとする。以下の問いに答えよ。 (問1) (ベクトルx1)=【a ; {(3/2)・c}】、(ベクトルx2)=【{(2/3)・b} ; d】とおくとき|(ベクトルx1)|,|(ベクトルx2)|,(ベクトルx1)・(ベクトルx2)の値を求めよ。 (問2) Aをa,cを用いて表せ。 (問3) Pがfによって、Cのx≦0,y≦0の部分に移されるとき、Aを求めよ。 お手数おかけしますが、よろしくお願いいたします。

  • 行列で悩んでいます!

    0<p,q p+q=1という条件下で P=| p 1-p |    | 1-q q | という行列Pに対して   行列Pの固有値はλ=0,1と算出できました。 最大固有値に対する長さ1の固有ベクトルxを求めよ。 という問題の『最大固有値』というのはλ=0,1の大きい方の1ということでいいのでしょうか?また、その結果計算して   | x | = √1/2 | 1 |   | y |       | 1 | という答えを出しました。 最後に P'y = λy かつ x'y = 1 を満たすベクトルyを求めよ(『'』は転置、λはもう一つの固有値)という問題ですが、『λはもう一つの固有値というのは最初に求めたλ=0,1と先ほど使った最大固有値λ=1以外のλ=0で計算するということでしょうか? とりあえず  y=| A |   | B | とおいて x=1/√2 | 1 |      | 1 | ですが転置すると x'=1√2 | 1 1 | P'y = λyより  pA+(1-q)B=0 (1-p)A+qB=0 ←ここが不安です。やはりもう一つの固有値λというのは0でいいのでしょうか、、、。 これを解いてp=q=1/2となりここでx'y=1を使っても答えがでません。 質問が多くてすみません。何かいい解き方はないでしょうか? また、解答がないので私の解いた問題の間違いなどございましたらご指摘いただけますでしょうか? よろしくお願いいたします。

  • 行列の固有値と固有ベクトルの証明が分かりません

    (1)2×2行列A=(a b c d)の固有値は x^2-(a+d)x+(ad-bc)=0 の解で与えられることを証明せよ。 (2)(1)の行列Aが固有値α、β(α≠β)を持つとき α、βに対する固有ベクトルをそれぞれ2×1行列(p.q) (r.s)として 2×2行列P=(p.r.q.s) を作ると 2×2行列P-1AP=(α.0.β.0) なることを証明せよ。 という問題が分かりません。 調べてみたのですがよく分かりませんでした。 教えてください。

  • 行列の固有値と対角化

    次の行列Aの固有値と固有ベクトルを求め、正則行列Pをもとめよ。 A=  0  1 -2 -3 で|A-λE|= -λ   1 -2 -3-λ より -λ(-3-λ)+2=3λ+(λ^2)+2 =(λ+1)(λ+2) よってλ=-1、-2 λ=-1に属する固有ベクトルは y=-xより(x、y)=α(1、-1) λ=-21に属する固有ベクトルは y=-2xより(x、y)=β(1、-2) これより正則行列Pは  1  1 -1 -2 になると思ったのですが、答えを見ると  1 -1 -1  2 とありました。どうしてでしょうか?

  • 行列の固有ベクトルの証明について

    はじめまして テスト対策のプリントで出た問題なのですが A,Bがn次行列で、B=QAQ^(-1)を満たすn次正方行列Qが存在するものとするとき、λがAの固有値で、→xがその固有ベクトルであるとする。このとき、λはBの固有値でもあり、→y=Q*→xはその固有ベクトルを示せ。 という問題で、前半の、λはBの固有値でもある、という部分は |B-λE|=|QAQ^(-1)ーλE|=|QAQ(-1)ーQλEQ(-1)|=|Q(A-λE)Q^(-1)|=|Q|*|A-λE|*|Q(-1)|=|A-λE| からわかるんですが、後半の『→y=Q*→x はその固有ベクトルである』 という部分がわかりません。。 どのようにすればいいのでしょうか?? よろしくお願いします

  • 数学(行列,微分・積分、ベクトル)

    問1 次の微分・定積分を求めなさい。 (1)d/dx{log|cos(x)|} = -sin(x)/cos(x) (2)∫(0→1) xe^-x dx =1-2e^(-1) 問2 行列A= (3 4) (1 0) について以下の各問に答えなさい。 (1)行列Aの固定値と固有ベクトルを求めなさい。 Aの固定値は λ=4, -1 λ=4の場合の固有ベクトルは X1=C1(4,1) (C1:任意定数) λ=-1の場合の固有ベクトルは X2=C2(-1,1) (C2:任意定数) (2)(1) で求めた固有ベクトルを用いて、行列Aを対角化しなさい。 対角行列P= (4 -1) (1 1) とおく。 P^(-1)AP= (4 0) (0 -1) 問3原点O(0,0),点A(4,-1),点B(2,2)がある時以下の各問に答えなさい。 (1)ベクトルOAとOB長さと内積OA*OBを求めなさい。 OA=<4,-1>,OB=<2,2> |OA|= √17,|OB|=√8 OA*OB=8-2=6 (2)∠AOBをθとする時,cosθとsinθを求めなさい。 cosθ=3/√34 sinθ=5/√34 (3)三角形OABの面積を求めなさい。 S=1/2|OA×OB|=5 問4 曲線 y =x^2 と直線y=2x によって囲まれた部分の面積を求めなさい。 S=∫(0→2) 2x-x^2= 4/3 解答がないため,解答のチェックをお願いしたいのですが,よろしくおねがいします。

  • 行列の対角化の問題です。

     見にくくて恐縮です。画像も参照してください。  2次正方行列 A の対角化が   ┌  ┐   │x 0│   │0 y│   └  ┘ のとき det(A) を求める。     ┌   ┐         1 ┌   ┐   P =│a  b│  P^(-1) = ────│ d -b│     │c  d│       ad - bc │-c a│     └   ┘,          └   ┘.        ┌  ┐   P^(-1)AP =│x 0│        │0 y│        └  ┘.   PP(^-1)AP = AP    ┌   ┐┌  ┐ ┌   ┐    =│a  b││x 0│=│ax by│    │c  d││0 y│ │cx dy│    └   ┘└  ┘ └   ┘.   A = APP^(-1)      1 ┌   ┐┌   ┐    = ────│ax by││ d -b│     ad - bc │cx dy││-c a│        └   ┘└   ┘     1  ┌         ┐    = ────│adx-bcy -abx+aby│     ad - bc │cdx-cdy -bcx+ady│        └         ┘  ここまで合ってるでしょうか?  合っていても   det(A) = 1/(ad-bc)( (adx-bcy)(-bcx+ady) - (-abx+aby)(cdx-cdy) ) を計算するのはメンドイです。行列式ならもっとうまい方法で求められるのでしょうか?

  • 行列の問題です、よろしくお願いします。

    A=(a b ; c d) (←2次の正方行列をこのように表すとします) (1)行列Aが固有値λ1、λ2 (λ1≠0、λ2≠0)を持つとするとき、ケーリー・ハミルトンの式を用いて、 tr(A)=λ1+λ2、 det(A)=λ1・λ2 となることを示せ。 (λ1の"1"などはλの添え字だとします) (2)上記の条件の下で、(λ1-λ2)・A^n=((λ1)^n-(λ2)^n)・A-((λ1)^n・λ2-λ1・(λ2)^n)・E が成り立つことを示せ。ただしnは正の整数とする。 ( "^n" はn乗を、"E"は単位行列を表しています) という問題がよくわかりません。 (1)は、僕なりの解としては、ケーリー・ハミルトンを用いなければ A-λE=(a-λ b ; c d-λ) det(A-λE)=(a-λ)(d-λ)-bc =λ^2-(a+d)λ+ad-bc=0 この方程式の2解はλ1、λ2なので、解と係数の関係より λ1+λ2=a+d=tr(B) λ1・λ2=ad-bc=det(B) としましたが、ケーリー・ハミルトンを用いるとどのようになるのでしょうか? (2)は、全然方針が思い浮かびません…どのように解くのでしょうか?よろしくお願いします。

  • 逆行列の証明

    逆行列の証明 行列Aに対して、AX=Eを満たす行列XをX=(p,q,r,s)とするとap+br=1・・・(1) aq+bs=0・・・・(2) cp+dr=0・・・・(3)、cq+ds=1・・・・(4) (1)×d-(3)×bから(ad-bc)p=d (2)×d-(4)×bから(ad-bc)q=-b (3)×a-(1)×cから(ad-bc)r=-c (4)×a-(2)×cから(ad-bc)s=a ?=ad-bcnot=0のとき p=d/?,q=-b/?,r=-c/?,s=a/?ゆえにX=1/?(d,-b,-c,a) このようにXを定めると、上の計算の逆をたどってAX=E ・・・・・・・以下省略 教えてほしいところ 何故、上の計算の逆をたどる必要があるのか理解できません。 AX=Eが成り立つようなXを求めたんだから、AX=Eが成り立つに決まってませんか??? 確認する必要性を教えてください