コラッツ予想とエルディッシュ分数予想について

このQ&Aのポイント
  • 今回はコラッツ予想が正しいと仮定すれば、エルディッシュ分数予想が正しいことを実験的に証明してみたいと思います。
  • コラッツ予想とは、奇数の数列が必ず1に収束するという予想です。
  • エルディッシュ分数予想は、分数が解ける数に関する予想であり、任意の偶数を代入して計算することが可能です。
回答を見る
  • ベストアンサー

分数の未解決問題のことで質問です

今回はコラッツ予想が正しいと仮定すれば、エルディッシュ分数予想が正しいことを実験的に証明してみたいと思います。自信はありませんが。  ⑴ ある奇数の数列 p[n]を考えます p[n]は 奇数でないといけないと仮定します。p[1]をスタート場所と 考えた時、p[1]は奇数であるとします。次の式が成り 立つとします。  (2^s)・p[n]=3・ p[n−1]+1  ① と式をあらわした時、十分に大きな数をLとした時に、  p[L]=1  となる予想がコラッツ予想だと思っています。  (2^s)・p[n]=3・ p[n−1]+1=m ②  ⑵ こちらの予想はエルディッシュの分数予想で、 a、b、c は任意の自然数を代入可能で、Q[k]は 分数が解ける数で、  Q[k]=24・k+1=4abcーbーc ③ です。  ここで、m=ab とおきmの約数を σ(m)で表すと Q[k]=4mcーcーσ(m)=(4mー1)cーσ(m)④ となります。ちなみにmは偶数です。 ここで④の式のmは任意の偶数ですので、 m=3・p[n−1]+1を代入して計算することが可能で、 計算してみると②と④より  Q[k]=(12・p[n−1]+4−1)cーσ(m)   =3(4・p[nー1]+1)cーσ(m)   =12・c・p[n−1]+3cーσ(m) ⑤ となります。 ここでQ[k]=24k+1、kは自然数です。  Q[k]=12・c・p[n−1]+3cーσ(m)=24k+1 ここで、  12・c・p[n−1]=24k ⑥  3cーσ(m)=1     ⑦ とおくと、⑦より   3cー1=σ(m) dをある自然数とすると、   m=d・(3cー1) ⑧ ⑥より   12・c・p[n−1]=24k c・p[n−1]=2k ⑨ ②、⑧より   3・p[n−1]+1=m=d・(3cー1)となりますので、 d=2とおけば良いと思います。ですのでmは偶数です。 このことを実験的に確かめてみます。 k=18の時は Q[18]=24・18+1=433 ⑨より c・p[nー1]=2・18     c・p[nー1]=36 c=4、p[nー1]=9、k=18、となり、     m=d・(3cー1)=d・11=22 Q[k]=12・c・p[nー1]+3cーσ(m) Q[18]=48・9+12ーσ(22) =432+1 =433 となります。

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

k=18の時 Q[18]=24*18+1=433=4abc-b-c 433=4abc-b-c ↓c=4だから 433=4ab*4-b-4 433=16ab-b-4 437=16ab-b ↓ab=m=22だから 437=16*22-b 437=352-b b=-85<0 となって bが正整数(自然数)であることに矛盾するから 証明できていません エルディッシュの分数予想とは 任意の自然数Qに対して 4/Q=1/x+1/y+1/z となる自然数x,y,zが存在する という事なのです (x,y,zは任意ではありません) だから 433に対して 433=4abc-b-c となるような 自然数a,b,cが存在する事を証明しなければいけないのです

koolergoal
質問者

お礼

 ご回答ありがとうございます。調べていたら、 あきら様なミスが見つかったので、これで、 打ち切らせていただきます。すみません。

関連するQ&A

  •  エジプトの分数問題が解けたように思えるのですが。

     エジプトの分数問題が解けたように思えるのですが。 4/n=1/a+1/b+1/cとすると4/(2^n・3^n-1)の形にできる数は解くことが出来ると一般にわかっているのですが2^n・3^m-1=p(pは素数)とすると、pは必ず解ける集合CS(n、m)に含まれることは解っていません。       OOOOOO           ?             ↑          ↑             2q         2q+1  2^n・3^m-1の形に解ける集合CS   2q+1はCS(n,m)集合に含まれるかどうかはまだ解らない     まずはpは解かれていない最小の素数とします。また、p以下の素数はもう解かれていて2^h・3^k-1の形になることが解っているとします。      p=2q+1=2^h・3^k-1      2q=2^h・3^k-2      q={2^(h-1)}・{3^k}-1    q<pですのでCS(n,m)に含まれます。  CS(n,m)集合に含まれているということはqはh、kのある自然数によって表現可能です。ということは、p=2q+1=2^h・3^h-1という形の素数にはh、kは必ず存在します。ですのでpも2q+1も解くことができます。  あとは解くことができるかどうかわからない最小の素数をpとおいて、数学的帰納法を用いればすべての素数を解くことができます。  

  •  再投稿:エジプトの分数問題が解けたように思えるのですが。

     再投稿:エジプトの分数問題が解けたように思えるのですが。 4/n=1/a+1/b+1/cとすると4/(2^n・3^m-1)の形にできる数は解くことが出来ると一般にわかっているのですが2^n・3^m-1=p(pは素数)とすると、pは必ず解ける集合CS(n、m)に含まれることは解っていません。       OOOOOO           ?             ↑          ↑             2q         2q+1  2^n・3^m-1の形に解ける集合CS   2q+1はCS(n,m)集合に含まれるかどうかはまだ解らない     まずはpは解かれていない最小の素数とします。また、p以下の素数はもう解かれていて2^h・3^k-1の形になることが解っているとします。      p=2q+1=2^h・3^k-1      2q=2^h・3^k-2      q={2^(h-1)}・{3^k}-1    q<pですのでCS(n,m)に含まれます。  CS(n,m)集合に含まれているということはqはh、kのある自然数によって表現可能です。ということは、p=2q+1=2^h・3^h-1という形の素数にはh、kは必ず存在します。ですのでpも2q+1も解くことができます。  あとは解くことができるかどうかわからない最小の素数をpとおいて、数学的帰納法を用いればすべての素数を解くことができます。

  • エジプト分数問題:修正文

    式1: P + z = 4y(xz-1) 式2: P + a = (4ab-1)(4c-a-1) Pは 24n+1 (nは自然数) 型の素数であるとする。   式1の導出:L=4xyz-4y-z    M=xz-1 のとき 4/L=1/xyLM +1/xyL +1/yM が成り立ちます。     そして、P=Lとおいて式を変形すれば式1が導かれます。   式2の導出:  4/P =1/(6n+k) +1/H +1/J 4/P-1/(6n+k)=1/H +1/J P=24n+1 とおき、 (4k-1)/(24n+1)(6n+k)=1/H +1/J ここで、HとJを変形して (4k-1)/(24n+1)(6n+k)=(4k-d-1)/Pdm(4k-d-1)                                                      +d/Pdm(4k-d-1)                6n+k=4kdm-dm(d+1) から      k=c、d=a、m=b として4を両辺にかけると         24n=16abc-4c-4ab(a+1)                  =(4ab-1)(4c-aー1)-a-1                24n+1+a=(4ab-1)(4c-a-1)                P+a=(4ab-1)(4c-a-1) となる。       素数Pに対して z を動かして式1の解(x、y、z)      が存在するか確かめる。もし(x、y、z)が存在するなら素数P            は単位分数分解の解が存在する。       もし、式1の解が存在しないのなら、aを動かして式2の解            (a、b、c)が存在するか確かめる。もし存在するなら素数Pは      単位分数の解が存在する。もし、式1と式2の単位分数分解の      解が存在しない場合、そのことを私に教えてほしいのです。        一応素数Pがどれぐらい3つの単位分数の解が存在するか      調べてみたのですが、少なくともPが1000以下の場合には      解がすべて存在することが調べて分かっています。知りたい      のは式1と式2を同時に成り立たせない素数Pがあるかという      ことが知りたいです。もし、すべての素数で反例がないことが      分かったのならエジプト分数の予想は正しいことになります。      ただ、多分反例が見つかると本人は思っています。      P=937 の場合(例1)     z=3、P+3=4y(3x-1)=940=4・5・47        P+3=4・47・(3・2-1)    (x、y、z)=(2,47,3) なので解が存在する。          P=1009 の場合(例2)               a=3、P+3=(12b-1)(4c-4)    1012=4・23・11=4(12b-1)(c-1)    (a、b、c)=(3,2,12)、(3,1,24)    が成り立ち P=1009 も解が存在する。

  •  エジプトの分数問題に関する質問です。

     エジプトの分数問題に関する質問です。  A(n)は自然数で構成される数列として、  A(1)、n∈N (1)[ A(n)が偶数のときに   A(n+1)=A(n)/2  [ A(n)が奇数のときに   A(n+1)=3・A(n)+1   とすると、たとえば、A(1)=25 とすると   A(1)=25 , A(2)=76,  A(3)=38,  A(4)=19  (1)の数列はnを∞ に近づけていくとA(n)=1になることを証明した場合、エジプトの分数問題を解 いたのと同じかそれともまったく関連がないのか皆さんにお聞きしたい。

  • 平方根の連分数展開の周期

    何冊か数論の本を読んでみたのですが、見つけることができませんでした。 Dを平方数でない自然数とするとき、√Dの連分数展開は周期を持つ無限連分数になります。もちろんこの周期自体は実際に連分数展開してみないことにはわかりませんが、周期が偶数になるか奇数になるかは簡単に判定できるのではないか、と思いました。このことはx^2-Dy^2=-1が整数解を持つかどうかと同値で、また判別式が-1になることとも同値だと思います。しかしいずれにしても連分数展開を実行してみない以上わからないので不便です。 D=n^2-2と書けないこと、かつD=p_1^{r_1}…p_k^{r_k}と素因数分解したとき、p_iたちすべてがmod 4で3と合同でない、ということと、連分数展開の周期が奇数であることは同値だと予想したのですが、これは正しいですか?実二次体がらみの話なので、どこかに書いてあるとは思うのですが・・・

  • 整数問題?がわからないので教えてください

    nが自然数であるとき、n(n^3-1)(n^3+1)は偶数で、かつ7の倍数であることを示せ。 という問題なのですが、 nを奇数とするとn=2k+1(kは自然数)とおけ、与式=4k(2k+1)(4k^2+6k+3)(4k^3+6k^2+3k+1) までやってみましたが、よくわからないので、解答をお願いします。

  • ピタゴラス数にからんだ整数問題

    以下の問題を一応証明したのですが、論述に自信がありません。入試の採点でつっこまれそうなか所を指摘して欲しいです。(京大志望です) 自然数 a,b,c について,等式 a^2+b^2=c^2 が成り立ち,かつ a,b は互いに素とする。このとき,次のことを証明せよ。 (1) a が奇数ならば,b は偶数であり,したがって c は奇数である。 (2) a が奇数のとき,a+c=2d^2 となる自然数 d が存在する。 (1)  a,bをともに奇数とすると  i,jを任意の自然数として   a=2i-1   b=2j-1 とおける。  すると、   a^2+b^2=(2i-1)^2+(2j-1)^2       =4(i^2+j^2)+4(i-j)+2=c^2  よってcが奇数であるときc^2も奇数となるからcは偶数。  よって   c=2k とおく。  すると、   0=a^2+b^2-c^2    =4(i^2+j^2-k^2)+4(i-j)+2≡2(mod.4) となって不合理。  よってa,bがともに奇数とはなり得ない。  よってaが奇数ならばbは偶数以外ありえない。 (2)  m,n(m<n)を自然数として   a=n^2-m^2   c=n^2+m^2 とおく。  (a,cはともに奇数よりn,mのうち一方は偶数で一方は奇数)  以下題意をみたす任意のa,cがこのようにあらわせることを示す。  上の式をn^2,m^2について解くと   n^2=(c+a)/2   m^2=(c-a)/2 となる。  よって   n^2m^2=(c^2-a^2)/4=b^2/4  よって   b=2mn となる。  これはbが偶数であるという(1)に矛盾しない。  よって上のようにa,b,cを表現することに不合理はない。(ただしm,nは互いに素とする。でないとa,b,cが互いに素であるという仮定に反する)  またこれより題意をみたすとき   a+c=2n^2  よって題意は示された。 (2)のa,cがm,nであのように表現できるという証明で、とりあえず矛盾はなさそうだからOKと言うような論法になってしまっている気がするのですが… どうでしょうか?

  • 新たに挑戦。エジプトの分数問題

    エジプトの分数問題が、解けたような気がするので、再度挑戦します。  e*P(e,f,g,h)=4*e*f*g*h - h - f (1)  Q(a,b,c)=4*a*b*c - b - 4c (2) わかりやすくするため、式を変形する。P()=Q()=24*n+1とする。 4*e*f*g - {(24*n+1)*e+f}/h=L=1 ? (4*b - 1)*a - {(6*n+b)/c}=K=1 ? 適当に値を代入して、L=1またはK=1に になれば、等式が成り立ち、解が存在するだろう。 なので、L≠1の時に、K=1とすることができることを証明する。 それにより、(1)の式の解がないとき、(2)の式に必ず解が見つけることが できることを表す。  4*e*f*g - {(24*n+1)*e+f}/h=L e=4*b - 1,f=1 とおくと  4*(4*b - 1)*g - 1{(24*n+1)*(4*b - 1)+1}/h=L  4*(4*b -1)*g={(24*n+1)*(4*b - 1)+1}/h+L h=4m とおく  4*(4*b - 1)*g={(24*n*b+b - 6*n)/m}+L ここで式を変形してKを代入する。 (4*b - 1)*a - (6*n+b)/c=K (4*b - 1)*a={(6*n+b)/c}+K a=4d とおくと  4*(4*b - 1)*d={(6*n+b)/c}+K 4*(4*b - 1)=[{(24*n*b+b - 6*n)/m}+L]/g =[{(6*n+b)/c}+K]/d nがどんなときにもK=1になることから、  {(24*d*b)/(g*m)} - {(6*d)/(g*m)} - {6/c}=0 (3)  {(d*b)/(g*m)}+{(d*L)/g} - {b/c}=K (4) (3)より  {(4*d*b)/(g*m)}={d/(g*m)}+{1/c} {d/(g*m)}*(4*b - 1)={1/c} {d/(g*m)}=[1/{c*(4*b - 1)}] (4)より  {d*(b+L*m)/(g*m)} - {b/c}=K [(b+L*m)/{c*(4*b - 1)}] - {b/c}=K ここで、Lが1以外の時にK=1となる数 b、cが存在する、たとえば、 L*m=(b+c)*(4*b-1)-b とおけば {(b+c)/c}-{b/c}=1=K となり、K=1とすることができる。 少し厳密性がありません。いい加減な証明です。

  • 答えの式の指数の中に文字が含まれていたとき

    具体的に言うと ある問題で p.qはともに奇数m,nは自然数で p^mq^n-(p^m-1q^n + p^mq^n-1 -p^m-1q^n-1) という式があって回答では この式からとんで p^m-1q^-1(p-1)(q-1)となっていました この式への行き方とどうやるのがを教えてください;

  • 未解決のエジプト分数問題の証明

     とりあえずエジプト分数問題が解けたような気がするので証明をしてみます。    L = 4abc-4b-c    M = ac-1  4/L= 1/abLM + 1/abL + 1/bM  上の式が正しいかどうか確認してみてください。  4abc-4b-c = n = p1  4ABC-4B-C = d*n + 1 = d*p1+1 = p2     A = a = d-1     B = b     C = d*c-1    以上からp1が解けることが分かればp2も自動的に解ける。 p1とp1より小さい数は解けることが分かっていると仮定する。 それ以上の素数で2*p1+1を超えない素数をp2とすれば、 d=2とおけばp2は解ける。このようにp1を大きくしていけば すべての素数で解ける。