• ベストアンサー

微分方程式の証明問題の質問です。

下記の証明の仕方がわかりません。 ** yf(t)は yf"+ pyf'+ qyf =f(t)の解, yg(t)は yg"+ pyg'+ qyg =g(t)の解であると仮定すると y(t)=ayf(t) +byg(t)は y"+ py'+ qy= af(t)+ bg(t) の解であることを証明せよ。 (式の意味が分かりにくいかと思いましたので画像を添付致しました。) ** お分かりの方、ご教授くださいませ。

質問者が選んだベストアンサー

  • ベストアンサー
  • kiyos06
  • ベストアンサー率82% (64/78)
回答No.2

0.1)d^2u/dt^2 +p du/dt +qu =f(t) 0.2)d^2v/dt^2 +p dv/dt +qv =g(t) 0.3)y =au +bv --> d^2y/dt^2 +p dy/dt +qy =af(t) +bg(t) 1)d^2y/dt^2 +p dy/dt +qy 1.1)d^2(au +bv)/dt^2 +p d(au +bv)/dt +q(au +bv) 1.2)a(d^2u/dt^2 +p du/dt +qu) +b(d^2v/dt^2 +p dv/dt +qv) 1.3)af(t) +bg(t) 2)d^2y/dt^2 +p dy/dt +qy =af(t) +bg(t)

nakamura1984
質問者

お礼

理解できました。ありがとうございます!

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「解である」とは, どういうことですか?

nakamura1984
質問者

お礼

毎回良いヒントをありがとうございます!

関連するQ&A

  • 偏微分方程式の解について。

    現在、私は3変数(x、y、z)2階の偏微分方程式を解いています。 その同次解を導いています。 まず、変数の一般解をΣX(r)*(cosmθ)、ΣY(r)*(cosmθ)、ΣZ(r)*(cosmθ)と仮定し元の式に代入したのち、r=exp(s)と変数変換します。 そして同次解の形をX=X'exp(λs),Y=Y'exp(λs),Z=Z'exp(λs)のように仮定し代入することによって、自明でない解をもつ次の特性方程式を得ました。 p^3+d*p+f=0 このときp=(λ^2-A)とします。 またAとdとfは定数です。 ここから解を導くのですが λ^2=p+A>0のときは、 X=F*exp(λs)+S*exp(λs)  =F*r^λ+S*r^(-λ) このときのF,Sは勝手においた未知数です。 とまずおきました。 次にXを既知だと仮定し、YとZの関係を求めるのですが、 関数型はXと同様のために、F=1として 同次解を仮定して代入した式で計算してYとZの関係を導きました。 (簡単な2次方程式を解く作業です) 同様にS=1としても行いました。 そこで以下の解を得ました。 Y=G(λ)*F*r^λ+G(-λ)*S*r^(-λ) Z=H(λ)*F*r^λ+H(-λ)*S*r^(-λ) G(λ)とH(λ)は2次方程式を解いて出した関係式です。 次がわからないところです。 λ^2=p+A<0の場合、つまりλの根が複素数の場合です。 上と同様に係数を比較して求めるのですが、 X=F*cos(λs)+S*sin(λs) と仮定するところまではわかりますが、 その仮定によって Y={Re[G(j*λ)]cos(λs)-Im[G(j*λ)]sin(λs)}*F +{Im[G(j*λ)]cos(λs)+Re[G(j*λ)]sin(λs)}*S となるのがわかりません。Zについても式の形は同様です。 本当に困っています。 意味がわからない文章かもしれませんが、汲み取っていただけると幸いです。 ヒントでもいいのでください。 ちなみに 実部については G(j*λ)=G(j*-λ)が成り立ち      虚数部については G(j*λ)=-G(j*-λ)が成り立っております。

  • 微分方程式に関する問題です。

    (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) (1)f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 (2)因数分解を用いて、f(y) = 0のときの一般解を求めよ。 ********************************************* という問題です。 (1)についてはできましたが、(2)でどのように解けばよいのか分かりません。お願いします。

  • 2階の微分方程式

    こんにちは。現在、微分方程式に取り組んでいます。 おそらくとても単純な所で詰まってしまって、困っています。よろしくお願いします。 式(1) G=dx/dt=py-ax+i 式(2) F=dy/dt=qx-by+j   を使って (1)G=F=0の時、x0、y0を求める (2)n=x-x0,m=y-y0とし、n(t),m(t)それぞれに対する2階微分方程式を求めよ という問題です。 (1)は連立方程式を解いて x=(bi+pj)/(ab-pq)  y=(aj+qi)/(ab-pq) までは出せたのですが、これらをそれぞれx0,y0と考えてしまってよいのでしょうか? 「x,yの2階の微分方程式にする」ようなヒントがあったのですが、そのヒントでかえって混乱しています。 (2)はx0、y0で詰まってしまったので。。。止まっています。 すみませんが、よろしくお願いします。

  • 全微分可能性の証明

    f:R^2→R (x,y),(a,b)∈R^2 とする。 g(x,y)=f(x,y)-f(a,b)-α(x-a)-β(y-b) lim g(x,y)/|(x,y)-(a,b)|=0 (x,y)→(a,b) 上を満たすようなgの存在を仮定したとき、それが一意であることを証明せよ。 ---------------- というのが全微分の定義と一緒に教科書に載っていたのですが証明の仕方がわかりません。一意性を示す証明なので、上の式を満たすようなg(x,y)とg'(x,y)が存在すると仮定し、そこから矛盾を導く(つまり、g(x,y)=g'(x,y)である)流れでよいのかと思ったのですが、やはりどうすればよいのかがわかりません。 証明の流れ、もしくは証明を教えてください。よろしくお願いします。

  • 微分方程式の問題

    変分法の問題で、ベルトラミの公式を導く過程でdf=(dy/dx)・d(∂f/∂y')という式からf-y'・(∂f/∂y)=const.という式が導かれていますが、この式変形がお分かりの方、証明を教えて下さい。yはxの関数であり、fはyとy'の関数です。dy/dxが定数であれば理解できるのですが。よろしくお願いします。

  • 微分方程式に関する問題です。

    (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 ********************************************* という問題です。 y' = -2sin(x)cos(x) y'' = -2{(cos x)^2 - (sin x)^2} として(*)に代入したのですが、うまく0になりません。 どういうふうに計算すればよいのでしょうか? よろしくお願いします。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 高校数学、整数解をもつ不定方程式

    (問題) 7x+9y-8z=-7((1)) 3x+2y-6z=-8((2)) (解答)(1)×3-(2)×4より、9x+19y=11((3)) x=-3、y=2は(3)の整数解の1つだから、(3)⇔9(x+3)=-19(y-2) よって、kを整数として、x=-19k-3、y=9k+2((4)) (4)を(1)に代入して、7(-19k-3)+9(9k+2)-8z=-7⇔13k+2z=1 k=1、z=-6はこの方程式の整数解の1つで、13(k-1)=-2(z+6) よって、mが整数のとき、k=-2m+1、z=13m-6。 k=-2m+1を(4)に代入して、x=38m-22、y=-18m+11、z=13m-6(mは整数) (疑問) この問題の方針は2つの方程式から1つの文字を消去した方程式(2文字)を作り、その方程式を満たす解を求め、その解を元の方程式の1つに代入し、3つの解を求める。というものです。 方程式(3)を満たすxとyはすべて、(1)と(2)を満たすのですよね? にもかかわらず、(4)で、k=0としたx、yは(1)を満たしません。(z=1/2となって、整数にはならない) また、今回この問題の疑問について、他の参考書で調べたところ、次の事柄が載っておりました。 (参考書)加減法の基本原理 (1)F(x,y)=0かつG(x,y)=0⇒aF(x,y)+bG(x,y)=0 (2)F(x,y)=0かつG(x,y)=0⇔F(x,y)=0かつaF(x,y)+bG(x,y)=0 (1)について、なぜ逆(aF(x,y)+bG(x,y)=0⇒F(x,y)=0かつG(x,y)=0)は成り立たないのでしょうか? aF(x,y)+bG(x,y)=0は点(X、Y)を通る直線群を表しますから、この(X、Y)はそれぞれa=1かつb=0,a=0かつb=1としたF(X,Y)=0とG(X、Y)=0を成り立たせるのではないでしょうか?

  • 微分方程式の質問です。

    f(y)をyの関数、z=f(y)とおくと f ' (y) dy/dx + f(y)P(x) = Q(x) の式は、 dz/dx + zP(x) = Q(x) と書ける。これを利用して、 dy/dx = (e^-y)(1-x)+1 の一般解を求める問題なのですが、解法が分かりません。 よろしければ教えて頂けないでしょうか。 よろしくお願い致します。

  • 偏微分方程式の解き方

    以下の偏微分方程式の解き方(正規形に変換)を教えて下さい. (1)Uxx + 4Uxy + 4Uyy = 0 (2)Uxx - 4Uxy + 3Uyy = 0 (3)4Uxx - Uyy = 0 <解答> (1)U=x f(2x-y)+g(2x-y) (2)U=f(3x+y)+g(x+y) (3)U=f(x+2y)+g(x-2y) いずれの方程式もv=x+py, w=x+qyとおき U(x,y)=U((qv-pw)/(q-p), -(v-w)/(q-p))=U(v,w)とし, Ux, Uxy, Uyyw求めて元の方程式に代入して解こうとしましたが うまくいきません. よろしくお願いします。