• 締切済み

Π[k=1,n](3k-2)!/(n+k-1)!

あみだくじの数学という本で、対称群を拡張した一般単調三角形の集合(generalized monotone triangle)L(S_n)というのを聞きました。 その要素の個数は、 1!4!7!10!…(3n-2)!/n!(n+1)!(n+2)!…(2n-1)! らしいです。その式を見て、なぜそれが整数になるのかが疑問に思いました。

  • fjfsgh
  • お礼率18% (158/843)

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

同様に nCk = n!/((n-k)! k!) がなぜ整数になるのかも、疑問じゃないですかね。で、これはどうやって証明されるのだっけ? というのがヒントになりませんかね?

fjfsgh
質問者

補足

n!/(n-k)! k! が整数であることの証明は、 [1]組合せの意味 [2]分母と分子が素数pで何回割れるかを考え、ガウス記号に関する不等式を使う [3]漸化式を用いて数学的帰納法 が思い浮かびます。 Π[k=1,n](3k-2)!/(n+k-1)! が整数であることの証明の方針、 [1]組合せの意味 対称群 (1234) (3412) において、下の行に着目し、左から1個(3)、左から2個(34)、左から3個(341)、左から4個(3412)を取り出し、小さい順に並び替えて、 3 34 134 1234 という三角形を考えます。この特徴に、下から上に広義単調増加、左から右に狭義単調増加、左上から右下に広義単調増加という性質があります。 その性質を満たすものを一般単調三角形と呼び、 3 24 234 1234 などがあります。 ただ、左上から右下に広義単調増加という性質において、その斜め方向というのが、直角三角形の斜辺に相当する部分だけを考えるのか、すべての右下方向を考えるのか、記憶はあいまいです。すみません。) n次の一般単調三角形の総数が Π[k=1,n](3k-2)!/(n+k-1)! らしいのですが、その導き方もわかりません。 [2]分母と分子が素数pで何回割れるかを考え、ガウス記号に関する不等式を使う ガウス記号に関する不等式が使えそうにもありません [3]漸化式を用いて数学的帰納法 漸化式があるのかも知りません

関連するQ&A

  • n次対称群の要素を互換で表すときの最大個数

    n次対称群(置換群)の要素を、隣接互換で表すときの最大個数は、転倒数が最大のものあり、 C(n-1,2)=Σ[k=1,n-1]k=n(n-1)/2 ただし、Cは二項係数。 では、n次対称群(置換群)の要素を、(隣接とは限らない)互換で表すときの最大個数は何なのでしょうか。

  • 要素数nの集合Aにおける反射律・対称律

     要素数nの集合Aにおいて (1)A上の関係で反射的なものはいくつあるか? これは空集合以外の(n-1)個でしょうか? (2)A上の関係で反射的かつ対称的なものはいくつあるか? これは{a}や{a,b,c}などは反射・対称を満たしているのでしょうか? 離散数学の問題の考え方が分からずに困ってます。説明よろしくお願いします。

  • |Z*n| の意味

     |Z*n| (Zは二重大文字、*は右上、nは右下) が何を表す記号なのか教えて下さい。  自分は最初、『n以下の正の整数の個数』かと思ったのですが。あと、商集合と関係あるかと思いましたがどうも違うようですし。。。  よろしくお願いします。

  • (1)m>n≧1を満たす整数m,nに対して次式が成り立つことを証明せよ

    (1)m>n≧1を満たす整数m,nに対して次式が成り立つことを証明せよ (nCn)+(n+1Cn)+(n+2Cn)+……(mCn)=(m+1Cn+1) (2)2n個の整数 1,2,3,……2n-1,2n を無作為にn個ずつの集合に分けると、一方の集合に含まれる最大値は 2n である。もう一方の集合に含まれる最大値をXとして、Xの期待値を求めよ。 教えてくださいお願いします

  • n^321-1が10の整数倍となるような1000以下の正の整数nの個数

    n^321-1が10の整数倍となるような1000以下の正の整数nの個数を求めよ。 よろしくお願いします。

  • あみだくじの横線の本数について

    あみだくじの定理で「全ての順列を生み出すには最低{n(n-1)/2}本の横線が必要」とあるのですがこれは一体どういうことなのでしょうか。証明できるんでしょうか? あみだくじをテーマに研究発表をしようと思うのですが「ああみだくじ」そのものについての文献ってないんですね。数学の線型代数の置換という分野に関係があるということはわかったのですが数学を学んでいる者ではないので数学書は理解に苦しみました(^^; ですのでできればわかりやすく説明して頂けるとありがたいです。

  • 赤チャートの集合の問題です。解説お願いします。

    正の整数nに対して、集合{1,2,...,n}の部分集合Mで条件m∈Mならば2m∉M を満たすものを考える。このような集合Mに対してMの要素の個数の取り得る 最大値をf(n)と表すとすると、nが4の倍数であるとき、 f(n)≧n/2 +f(n/4)が成り立つことを示せ。 という問題がまったくわかりません。解説お願いします。

  • 集合の問題なんですが

    集合Xの元の個数がn(nは整数かつn≧0)のとき集合Xの冪集合の元の個数を求めるという問題なんですがどのように求めたらいいんでしょうか?

  • 連続したn個の整数の積

    ひき続いたn個の整数の積のなかには、nの倍数が含まれることがわからないので質問します。問題は、 整数a,bを係数とする2次式f(x)=x^2+ax+bを考える。f(α)=0となるような有理数αが存在するとき、以下のことを証明せよ。 (1)αは整数である。(2)任意の整数lと任意の自然数nに対して、n個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。 (1)α=m/n(m,nは互いに素な整数)とおくと条件より (m/n)^2+a(m/n)+b=0, m^2/n=-(am+bn) m^2はnで割り切れるが,m,nは互いに素だから n=±1しかない。ゆえにα=±mとなり、αは整数である。 (2)f(α)=0だから、f(x)=x^2+ax+b=0となる2次方程式は、x=αなる解をもつ。ほかの解をβとすれば、解と係数の関係からα+β=-a,β=-a-αよりβも整数である。ゆえにf(x)はこの2整数α,βを用いて、f(x)=(x-α)(x-β)と因数分解できる。したがってf(l)=(l-α)(l-β)となりf(l)はl-αで割り切れる。同様に、 f(l+1)はl+1-α で f(l+2)はl+2-α   ・・・ f(l+n-1)はl+n-1-α で割り切れる。 ゆえにf(l)f(l+1)f(l+2)・・・f(l+n-1)はそれらの積 (l-α)(l+1-α)(l+2-α)・・・(l+n-1-α)= (l-α)(l-α+1)(l-α+2)・・・(l-α+n-1)で割り切れる。 ここがわからないところです。 l-αからはじまる引き続いたn個の整数の積だから、どこかにnの倍数がある。 自分はl-α=-3 n=4で計算をしたら、 -3,-2,-1,0 となり0が4で割り切れるのかと疑問に思ったり、 他の数を代入して計算してみても、ひき続いたn個の整数の積のなかには、nの倍数が含まれることが実感できませんでした。 解答の続きは、よってn個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。でした。 どなたか、ひき続いたn個の整数の積のなかには、nの倍数が含まれることを証明してください。お願いします。

  • 有限集合のσ代数の要素数は2^n-nか?

    Ωを要素数nの有限集合とするとき、 Ωのσ代数の要素数は2^n-nであるという仮説を立てました。 これが正しいなら証明したいです。 たとえばn=3とし、Ω={0, 1, 2}のσ代数を考えると、その要素は 1){φ, Ω} 2){φ, {0}, {1,2}, Ω}, {φ, {1}, {0,2}, Ω}, {φ, {2}, {0,1}, Ω}, 3)Ωの部分集合全体 の5つです。これを要素1の集合の個数で考えると 1)3C0=1 2)3C1=3 3)3C3=1 となります。この総和は 3C0 + 3C1 + 3C3 = (3C0 + 3C1 + 3C2 + 3C3) - 3C2 = (1+1)^3 - 3C1 = 2^3 - 3 となるので、上記の推測を得ました。 n=4でも確認できました。帰納法による証明を試みましたが、 どう示していいかわかりませんでした。 アイデアを頂ければ幸いです。 (もし推測が間違っていたらその旨ご指摘ください) なお、σ代数の定義は以下の通りです。 「集合Ωの部分集合の族Bがσ代数であるとは、次の3つを満たすことである。 (1)φ∈B (2)A∈Bならば、A^C∈B (3)A1, A2, ...∈Bならば、U_{i=1}^∞ Ai ∈ B」 (※この質問は他サイトにも投稿しましたが、解答がなかったので転載しています)