• ベストアンサー

e^x-(x^0/0!+…+x^n/n!)>0

f[n](x)=e^x-(x^0/0!+x^1/1!+…+x^n/n!)>0を示せ n=0のとき成立 n=kのとき成立すると仮定すると n=k+1のときf[k+1](x)=f[k](x)-x^(k+1)/(k+1)!となってこれが正を示すときに別の質問で(f[k+1](x))'を使って増減表を書くと聞いたのですが(f[k+1](x))'=e^x-(x^0/0!+x^1/1!+…+x^k/k!)が0になる場所はわかるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.3

A#2の補足について A#2を良く読めば分かると思いますが? 分からないから補足で質問されてると思うので より詳しく解説させていただきます。 >>f[k](x) > 0 なのでf[k+1](x) > f[k+1](0)となる理由 と結局f[k+1]'(x) = f[k](x)…(※)を何に使ったのか良ければ教えてください n=kの時 x>0でf[k](x) > 0…(A) が成立すると仮定したはずですね。 f[k+1]'(x) = f[k](x) …(B) この(B)はf [k+1](x)をxで微分した式が「= f[k](x)」 となることを示した式ですね。 (B)式が成立するところまでは分かりますね。 仮定(A)により(B)の右辺のf[k](x)は正ゆえ(B)の左辺も f[k+1]'(x) > 0 (x > 0 ) …(C) となりますね。 (C)は x > 0 でf[k+1](x)が増加関数であることを表します。 ここで(※)の式は f[k+1](x) が増加関数であることを示す為に使っていますね。 x=0における増加関数f[k+1](x)の値 f[k+1](0)=e^0 - 1 = 0 …(D) なので x > 0 では増加関数f[k+1](x)に対して f[k+1](x) > f[k+1](0) = 0 (x>0) 成立します。 (注)増加関数f(x)とは任意のxa,xbに対して xa<xbのとき f(xa)<f(xb) を満たす関数です。 性質として xa<xc<xbを満たすx=xcで  f(xc)=0 なら  「x<xcに対してf(x)<0」かつ [xc<xに対してf(x)>0」 が成立します。 お分かりになりましたか?

noname#178691
質問者

お礼

理解力がなくて申し訳ありません ようやく分かりました ありがとうございました

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (3)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

←A No.2 補足 平均値定理により、 f[k+1](x) - f[k+1](0) = f[k+1]'(c) (x-0) となる c が、0 < c < x の範囲に在ります。 f[k+1]'(x) = f[k](x) と f[k+1](0) = 0 を上式に会わせると、 f[k+1](x) = f[k](c) x, 0 < c < x です。 この式から、 f[k](x) > 0 ならば f[k+1](x) > 0 が出ます。

noname#178691
質問者

お礼

分かりました ありがとうございました

全文を見る
すると、全ての回答が全文表示されます。
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

x > 0 の範囲で成立 …ですよね? 0 になるのは、x = 0 のときです。 f[n](0) を計算してご覧なさい。 以前の質問に回答したとおり、 f[n](x) = e^x - (1 + x^1/1! + … + x^n/n!) と置けば、 f[k+1]'(x) = f[k](x) です。 n = k のとき成立すると仮定すると、x > 0 では f[k](x) > 0 なので、 f[k+1](x) > f[k+1](0) です。 ここで f[k+1](0) = 0 であることが効いて、f[k+1](x) > 0。 n = k+1 でも成立することが示せました。

noname#178691
質問者

補足

またx正を書き忘れました、すみません f[k](x) > 0 なのでf[k+1](x) > f[k+1](0)となる理由と結局f[k+1]'(x) = f[k](x)を何に使ったのか良ければ教えてください

全文を見る
すると、全ての回答が全文表示されます。
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

数学的帰納法の使い方は理解していますか?

noname#178691
質問者

補足

まず何か最初の数字で成立することを示して、kが成り立つと仮定しk+1で成り立つことを示すんですよね?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • e^x-(x^0/0!+…+x^n/n!)>0

    f[n](x)=e^x-(x^0/0!+x^1/1!+…+x^n/n!)>0を示せ n=0のとき成立 n=kのとき成立すると仮定すると n=k+1のときf[k+1](x)=f[k](x)-x^(k+1)/(k+1)!となったのですがこれが0より大きいと示す方法が分かりません 教えてください

  • f(n)=(1)^n+(2)^n+(3)^n+(4)^n

    nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n  を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。

  • Σ{n=0~∞} (x^n)((x-1)^2...

    Σ{n=0~∞} (x^n)((x-1)^2n) /n! …(1) ってどういう風に考えたら e^x(x-1)^2とおけるのでしょうか? テーラー展開の考え方を使うというのはわかるのですが e^x(x-1)^2ってテーラー展開したら Σ{n=0~∞} (x^n)((x-1)^2n) /n! なりますか? テーラー展開は最近知ったばかりでよくわかりませんが、 f(x)=f(a)+f'(a)x/1!+f''(a)(x^2)/2!+f'''(a)(x^3)/3!+... …(2) という式はしってます。 (証明とかはわかりませんが、基本的なsinxとかのテーラー展開はできます) よくわからないのが、(1)式だと、分母がn!のときに分子のxが3n乗になってしまうのがよくわかりません。(2)式のとおり行く分母がn!のときに分子のxがn乗以外にはならない気がするのですが。。。 それともこれはF(x(x-1))=e^x(x-1)^2としてΣ{n=0~∞} ((x(x-1)^2)^n) /n!と考えるのでしょうか?

  • f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を

    次の問題で質問です。 [問]f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を示せ(f_n,g_n,gはルベーグ可測な関数)。 [証明] R^nでの殆どいたるところでf_n=g_nだというのだから零集合Zを除いたx∈Eではf_n(x)=g_n(x)という意味だと思います。 f_n,g_n,gをE⊂R^n上のルベーグ可測関数とする。 仮定より,0<∀ε∈R,0=lim[n→∞]μ({x∈E;|g_n(x)-g(x)|≧ε}) =lim[n→∞]μ({x∈E\Z;|g_n(x)-g(x)|≧ε}∪{x∈Z;|g_n(x)-g(x)|≧ε})(但しZは零集合) =lim[n→∞](μ({x∈E\Z;|g_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵測度の定義(可算加法性)) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵仮定「f_n=g_n a.e.」) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+0) (∵零集合の定義) =lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}+μ({x∈Z;|f_n(x)-g(x)|≧ε})) (∵零集合の定義) ≧lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}∪{x∈Z;|f_n(x)-g(x)|≧ε})) (∵測度の定義) =lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε}+) 即ち, 0<∀ε∈R,lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε})=0. ∴ {f_n}はgに測度収束する。 となったのですがこれで正しいでしょうか?

  • Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる

    こんにちは。 [問]{φ_n(x)}を[a,b]での直交関数列とせよ。級数Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる事を示せ。 [証] 仮定より[a,b]でΣ[n=1..∞]a_nφ_n(x)=f(x) …(1)と言える。 c_k (k=0,1,2,…)をf(x)の{φ_n(x)}に於ける[a,b]でのフーリエ係数とすると フーリエ係数の定義から c_k=∫[a..b]f(x)φ_k(x)dx/∫[a..b](φ_k(x))^2dx=∫[a...b](Σ[n=1..∞]a_nφ_n)φ_k(x)dx/∫[a..b](φ_k(x))^2dx (∵(1)) =∫[a...b]a_kφ_kφ_k(x)dx/∫[a..b](φ_k(x))^2dx(∵{φ_n(x)}は直交) =a_k∫[a...b](φ_k(x))^2dx/∫[a..b](φ_k(x))^2dx =a_k となり,一様収束である事の条件を使わなかったのですがこれで正しいのでしょうか?

  • [ ]はガウス記号を表し、一般に不等式 x-1<[x]≦x および [

    [ ]はガウス記号を表し、一般に不等式 x-1<[x]≦x および [x]≦x<x+1 である。 (I) lim(n→∞)[2*e^n+1]/e^n 自然数nに対し等式 [logk]=n が成立するような整数kの個数をf(n)とする。このとき以下を求めよ。 (II) lim(n→∞)f(n)/e^n+1 高校生です。できるだけわかりやすく説明していただければ幸いです。

  • lim(n→∞) Σ(k=1,n) n*(5/6)^n

    lim(n→∞) Σ(k=1,n) n*(5/6)^n この計算はどう解けばいいのでしょうか? Σの部分の計算ド忘れしてしまいました。 Σr^n=r(r^n-1)/(r-1) Σn=n(n+1)/2 は覚えてますが、確か中身が掛け算されてるのってΣとΣで分解できないですよね? つまり、Σf(x)*g(x)≠Σf(x)*Σg(x)ですよね? 計算に躓いてこまってます。よろしくお願いします。

  • n^n +1が3で割り切れるもの

    「(1)正の整数nでn^3 +1 が3で割り切れるものをすべて求めよ (2)正の整数nでn^n +1 が3で割り切れるものをすべて求めよ」 (1)なのですが、n=3k、n=3k+1、n=3k-1のときに分けて計算したところn=3k-1すなわちnが3で割って2余るときが適することがわかりました。しかし「すべて」求めるという問題文からするとダメなのかな?と思ったのですがどうなのでしょうか? (2)なのですが、(1)と同じようにできそうかなと思ったのですがなかなかうまくいきませんでした。(1)を利用するということはできるのでしょうか? 回答いただければ幸いです。よろしくお願いします

  • lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxが示せません

    宜しくお願いいたしました。 [問]各n∈Nに対し,f_n(x)=nx/(1+nx),x∈[0,1]とする。 数列{f_n}は[0,1]で積分可能関数fには各点収束するが一様収束しない事を示せ。 そしてlim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる事を示せ。 で「lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる」が示せずに困っています。 f(x)= 1/e (x=1の時) 1 (0<x<1の時) 0 (x=0の時) と積分可能関数fが求めました。 でも 0<x<1の時 lim[n→∞]∫[0~1](f(x)-f_n(x)) =lim[n→∞]∫[0~1](1-nx/(1+nx))dx =lim[n→∞]∫[0~1](1/(1+nx))dx =lim[n→∞][-n/(1+nx)^2]^1_0 =lim[n→∞](-n/(1+n^2)+n) となり0になりません。何か勘違いしておりますでしょうか?

  • e^x > Σ[k=0→n](x^k/k !) の証明です。

    e^x > Σ[k=0→n](x^k/k !) の証明です。 「x>0のとき、任意のn∈Nに対して、e^x>Σ[k=0→n]x^k/k !が成り立つことをTaylorの定理を用いずに示せ。」という問題です。Taylorの定理を使わない場合、どのように証明すればよろしいのでしょうか? 宜しくお願い致します。