素元の分解の一意性の証明

このQ&Aのポイント
  • 整域Rにおける素元の分解は一意的であることを証明します。
  • 整域Rが単元を除いてq_1 = p_1となる場合、単元倍を除いてp_i = q_iとなります。
  • 整域Rが任意の単元でない元a≠0が一意的に既約元の積にかけられる場合、Rは素元分解整域となります。
回答を見る
  • ベストアンサー

【素元の分解】一意性の証明

代数学の初歩にて、2つほど疑問があります。 片方だけでもよいので、どなかたご教示お願いします。 (1)整域Rにて、1つの元の素元分解は一意的である。  すなわち、p_1p_2 ... p_r = q_1q_2 ... q_s    (p_i と q_i は素元)    とすると、r=sであり、番号をいれかえることで単元倍を除いてp_i = q_i となる。 という命題で、単元倍を除く ということの意味がよくわかりません。 いろいろやって、適当に順番を入れ替えて、q_1 = ap_1 と表せる (aは単元)ことはわかったのですが、その直後、 『すなわち、単元倍を除いて q_1 = p_1である』と続くのですが、 これが意味不明です。どうあがいてもq_1 = p_1は正しくないと思うのですが、 単元倍を除いて というのは一体どういうことなんでしょうか。 (2)上の命題の直後に続く命題です。 任意の単元でない元a≠0が、単元倍を除いて一意的に既約元の積にかけるならば、 整域Rは素元分解整域である。 これを示すためには、条件の下 既約元が素元になることを示せばいいですよね。 0≠a(aは単元でない)をRの既約元として、イデアルRaを考えたとき、 xy∈Raとすると、a | xyで、 条件より x=x_1x_2 ...x_r y=y_1y_2 ... y_s と分解できます。 よって、a | x_1x_2 ...x_r y_1y_2 ... y_s となります。 ここで、『既約元分解の一意性から、既約元aは、とあるx_i かy_iに単元倍を除き等しくなる。』 とあるんですが、ここもさっぱり理解できません。 経験不足であることは十分わかっているのですが、 ヒントだけでも教えていただけないでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「単元倍を除いて」ってのは「単元倍してるのを無視すれば」ってくらい. 「単元倍を無視する」わけだから, q_1 = a p_1 (a は単元) のとき「a倍」はなかったことにしていい. 後者は... 「既約元分解の一意性」ってのが何を意味するか, かなぁ. 「条件より x=x_1x_2 ...x_r y=y_1y_2 ... y_s と分解できます」の「分解」は, てきとうにやっていいわけじゃなくってなにか条件があるんだよね, きっと.

その他の回答 (1)

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.2

p_1p_2 ... p_r = q_1q_2 ... q_s    (p_i と q_i は素元)    とすると、r=sであり、番号をいれかえることで単元倍を除いてp_i = q_i となる。 という命題で、単元倍を除く ということの意味がよくわかりません。 いろいろやって、適当に順番を入れ替えて、q_1 = ap_1 と表せる (aは単元)ことはわかったのですが、その直後、 『すなわち、単元倍を除いて q_1 = p_1である』と続くのですが、 これが意味不明です。どうあがいてもq_1 = p_1は正しくないと思うのですが、 単元倍を除いて というのは一体どういうことなんでしょうか。 6=2*3=(-2)*(-3) であり、 2=(-1)*(-2) (-2)=(-1)*2 なので、 -2 は 単元 -1 を 2 にかけてある。 イコールの意味をかえて、 単元をかけたものは等しいと考える。 と 2=-2 と書ける。 1/2 = 2/4 = 3/6 のようなもの。表現は違うが一定の約束で等しいとする。

関連するQ&A

  • 自明でない因数分解とは?

    自明でない因数分解とはどういうものでしょうか? というのもある本にて、 整域Rの元aが、単元でも0でもなく、さらに条件  p,q∈R, a=pq ⇒ pまたはqがRの単元 をみたすとき、いいかえればaが自明でない因数分解を持たないとき、aを既約元という。 と書いてあるからです。

  • 素元分解整域 既約

    m ≧ 5 を奇数とする.Z[√-m] := {a + b√-m | a, b ∈ Z} は環になります。 この問題では, Z[√-m] が素元分解整域でないことを示したいです。(素元分解整域では,既約元は素元であることに注意) Z[√-m] において,2 が既約元であることをどう示したらいいでしょうか。

  • 【代数】aとbが互いに素であるとは?

    単項イデアル整域Rにおいて、とある元aを素元分解すると、 a=xyzと分解できた。 このときxとyは互いに素であるから、これらで生成される2つのイデアルRxとRyは互いに素である。 つまり、Rx+Ry=Rが成り立っている。 という文章についてなんですが、xとyが互いに素である というのはどういうことなんでしょうか。 文脈から判断するに、互いに異なる(単元倍をのぞく)素元であるという意味だと思うのですか、 違いますか。 また、なぜxとyが互いに素であるならばRx+Ry=Rが成り立つ (つまり、それらで生成される単項イデアルは互いに素である) のでしょうか。 ヒントでもいいので、誰かご教示お願いします。

  • 素元

    素元だけど既約元ではない例についておしえてください 整域における「素元⇒既約元」の証明を見ると、整域でない環における零因子を考えることになると思うのですが、よくわかりません どうかよろしくおねがいします

  • 素因数分解の一意性?????

    m,n,p,qをすべて互いに素な自然数とした時に、 2^n・p^m=q^mにおいて、 素因数分解の一意性より、qは2の倍数である。 素因数分解の一意性ってどういうことなのでしょうか?

  • スペクトル分解の一意性の証明について

    TがVの正規変換であるとき Tの相異なる固有値全部をβ_1,β_2,・・・,β_kとし 対応する固有空間をW_1,W_2,・・・,W_kとする W_iへの射影子をP_iとすれば P_1+P_2+・・・+P_k=I P_iP_j=0 (i≠j) T=β_1P_1+β_2P_2+・・・+β_kP_k が成立する。これを正規変換Tのスペクトル分解という。 スペクトル分解は一意的である。 実際、射影子P'_1,P'_2,・・・,P'_kによるもうひとつのスペクトル分解 P'_1+P'_2+・・・+P'_k=I P'_iP'_j=0 (i≠j) T=β_1P'_1+β_2P'_2+・・・+β_kP'_k があったとしよう。 P_i,P'_iがそれぞれ部分空間W_iW'_iへの射影子であるとすれば TのW_i,W'_iへの制限はどちらもスカラー変換β_iIであるから W_i=W'_i よってP_i=P'_i ("逆"の証明は略) と教科書にあったのですが、最後、なぜW_i=W'_iが言えるのかがわかりません。 TのW_i,W'_iへの制限はどちらもスカラー変換β_iIであることを用いてW_i⊂W'_iかつW_i⊃W'_iを示せるのですか? W_i⊃W'_iのほうに関しては x'_i∈W'_iとすると T(x'_i)=β_i(x'_i)であるから、x'_iはTの固有値β_iに対する固有空間W_iの固有ベクトルであるといえる。よってx'_i∈W_i つまりW_i⊃W'_iである。 とできるかな?とは思ったのですが、もう一つが・・・。 W_i⊃W'_iであることとVが直和であることを用いてW_i=W'_iを示せるかな?とも思ったのですが、なんとなくなりそうってだけで、どのように厳密に示せばいいのかよくわかりません。 教科書にもさらっと書いてあるだけですし、おそらく簡単なことなのでしょうが私にはよくわからないです・・。 どなたか W_i=W'_i よってP_i=P'_i の証明教えていただけないでしょうか。 よろしくお願いいたしますm(_ _)m

  • 環論の素元について

    一意分解環Aとその可逆元全体の集合A'について、 (1)Aの相異なる素元p1,…,pnは互いに素である (2)任意の元a∈Aとu∈A'に対して、非負整数m1,…,mnとAの素元p1,…,pnを用いて a=up1^m1p2^m2…pn^mnと表せる 以上二つの証明について、回答頂けますと幸いです。何卒よろしくお願いいたします。

  • この多項式の因数分解を教えてください

    x^2+(p+2q)xy+2pq^2+4x+(11p-14q)y-77 この多項式の因数分解を教えてください。

  • 素数の分類に関して

    前回質問させていただいた証明に関することなのですが、最後の一文が分からないためもう一度質問させていただきます。 [類題] 「8n + 3 型の素数は無限に多くある事を示せ。」の略解。 *)文中のp^は複素数pの共役な複素数です。例えば、p=1+iの場合、p^は1-iのことです。 また、a2 はaの二乗という意味です。  証明)もし 8n + 3 型の素数が有限個であったとし、その全体を p1, p2, ... , pn とする。 P = p1p2 ... pn + √2 i と置いて、これを単項イデアル整域 Z[√2 i ] で素元分解する。 N (P) = PP^ は奇数であるから(正確には、 N (P) ≡ 3 ( mod. 8 ) 、) P の有理整数の素因数は奇数である。この因子は PP^ の中では偶数冪で出てくるから、その部分は 8n + 1 型である。又、 P は有理整数に同伴でないから、a + b √2 i 型 (b ≠ 0, 有理整数の素因子と同伴でない物) の因子がある。PP^ は奇数であるから a は奇数である。更に、この a + b √2 i 型の因子の b が偶数であるとすると、 N( a + b √2 i ) = a2 + 2b2 ≡ 1 (mod. 8) であるから、 この形の b が全て偶数であるとすると PP^ ≡ 3 (mod. 8) と矛盾する。従って b が奇数の物 a + b √2 i が有るが、素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。故にこの型の素数は無限個。 素元分解の一意性により、N( a + b √2 i ) = a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8) となり有限性に矛盾。 における a2 + 2b2 は素数であり a2 + 2b2 ≡ 3 (mod. 8)となった場合なぜ有限性に矛盾していると言えるのでしょうか。 a2+2b2が素数でないならば矛盾はしてないのでしょうか。 よろしくお願いします。

  • 大至急お願いします!解析の問題です!!!!

    大至急御願いします!解析の問題です!!!! 分かる範囲でいいので、なるべく詳しくお願いします! 1問でもかまいません!よろしくお願いします! 1. (1)R^2のノルム||・||を一つ選んで、その選んだノルムの定義を記せ。 (2)pを正の定数とし、B={y^→(yベクトル)∈R^2;||y^→||≦p}とおく。 ある定数M>0が存在し、任意のy^→=(y1),z^→=(z1)∈Bに対して (y2) (z2) |y1^2-z1^2|≦M||y^→-z^→||,|y2^2-z2^2|≦M||y^→-z^→||,|y1y2-z1z2|≦M||y^→-z^→|| が成り立つことを示せ。 (3)Iを有界閉区間とし、a(x),b(x),c(x),d(x)はI上の連続関数とする。R^3の領域 E=I×B={(x,y^→);x∈I,y^→∈B} において、微分方程式 (y1)´=(a(x)y1^2+b(x)y2^2) (y2) (c(x)y1y2+d(x) ) の解は、I×B内に任意に与えられた初期条件に対して一意的に存在することを示せ。 (4)前問の微分方程式について、 I×R^2={(x,y^→);x∈I,y^→∈R^2} においても初期条件に対する解の一意性が成り立つことを示せ。 2. IをRの区間とする。f^→(x,y^→)はI×R^nの連続関数とする。 微分方程式y^→=f^→(x,y^→)については、初期条件に対する解の一意性が成り立つと仮定する。 (1)I×R^n上で||f^→(x,y^→)||が有界であるとき、この微分方程式の任意の解はI全体に延長可能であることを示せ。 (2)ある定数M>0が存在して、I×R^n上で ||f^→(x,y^→)||≦M√||y^→|| が成り立つとき、やはりこの微分方程式の任意の解はI全体に延長可能であることを示せ。 3. 微分方程式(y^→)´=f^→(x,y^→)について、初期条件に対する解の一意性が成り立っているとする。 この微分方程式の、初期条件y^→(a)=b^→をみたす極大延長解を p^→(x,a,b^→)で表し、その定義される区間をIとする。このとき、任意のa1∈Iに対して、 p^→(x,a1,p^→(a1,a,b^→)=p^→(x,a,b^→) (任意のx∈I) が成り立つことを示せ。 よろしくお願いします!!!!!