• 締切済み

詳しい解説をお願いします。

以下の問題です。 ベクトルの成分が座標変換によって式(11)のように変換されるとき、基底は式(12)のように変換されることを示せ。ただし、ここではR_ijは回転変換に限らないものとする。 添付画像の上式が式(11)、下式が式(12)です。 ベクトル↑vは ↑v=(v1) (v2) (v3) 回転座標変換を表す行列をR=(R_ij) と書く事にします。ベクトルの成分が回転座標変換に対して v_i'=Σ【j=1→3】R_ijv_j のように変換されるものとします。↑eを基底とします。 よろしくお願いします。

みんなの回答

  • phyonco
  • ベストアンサー率38% (47/121)
回答No.1

↑vを基底で表すと ↑v = Σ【i=1→3】v_i ↑e_i 座標が回転されてv_iが v_i -> v'_i = Σ【j=1→3】R_ijv_j と変化したとする。この回転に伴い基底が ↑e_i -> ↑e'_i と変化したとする。 座標が回転したのであって ベクトルそのものは不変であるから、 ↑vそのものは変わらない。そこで、 ↑v = Σ【i=1→3】v'_i ↑e'_i = Σ【i=1→3】Σ【j=1→3】R_ijv_j ↑e'_i = Σ【j=1→3】Σ【i=1→3】v_j R_ij ↑e'_i = Σ【j=1→3】Σ【i=1→3】v_j R_ij ↑e'_i iをj, jをiと書き直して = Σ【i=1→3】v_j (Σ【j=1→3】 R_ji ↑e'_j) これが最初に書いた式に一致しなければならないから Σ【j=1→3】 R_ji ↑e'_j = ↑e_i 両辺に右から(R^-1)_ikを掛けてiで和をとれば、 Σ【i=1→3】 R_ji (R^-1)_ik = delta_{jk} (ただしdeltaはクロネッカーのでるた、)だから、 ↑e'_k = Σ【i=1→3】↑e_i (R^-1)_ik が得られる。

関連するQ&A

  • 座標変換について

    座標変換について 回転座標変換を表す行列を R=(R_ij) と書く事にします。 v_i'=Σ【j=1→3】R_ijv_j のように変換されるものとします。 ここで、 (1) 『座標変換で矢印(ベクトル)そのものは変わらないから、内積は回転しても変わらない』 とはどういうことですか? (2)『そこで、任意のベクトル↑u,↑vに対して Σ【i=1→3】u_i'v_i'=Σ【i,j,k=1→3】R_ijR_iku_jv_k=Σ【i=1→3】u_iv_i が成り立たなければならない。このためには Σ【i=1→3】R_ijR_ik=δ_jk となっていることが必要十分である。』 などと書いてありましたが、この理由がわかりません。

  • 基底の変換行列

    基底の変換行列 空間V(dim V=n)の2種類の正規直交基底{a_i},{b_i}(i=1,…,n)があるとき,この2種類の基底はユニタリ行列で結ばれていると思いますが,これはユニタリ行列をU,そのij成分をu_{ij}とするとき, (1) a_i=Σ_[j=1]^[n] u_{ij} b_j と書いても, (2) a_i=U b_i (i=1,…,n) と書いても同じことですか?

  • 基底変換とベクトルの成分変換について

      ちょっと確認したいです。 直交座標系(つまり直角座標、円柱座標、球座標など)の間で座標変換を行うとき、基底変換の表現行列とベクトルの成分変換の変換行列は同じものですか。 つまり直交座標系どうしで座標変換を行うとき、基底変換の表現行列は同時にベクトルの成分変換の変換行列になりますか。    

  • 直交変換に関わる直交行列について

    直交変換についての質問なのですが、基底ベクトルを2つの座標に関してそれぞれe、およびe' で表わし、このときの直交行列を R_ij のように表わすとすれば、 e_j = R_ij e'_i e'_i = R_ij e_j がなりたちますが、見方をかえれば e_i = R_ij e'_j e'_j = R_ij e_i も成立するようなきがするのですが、実際どうなのでしょうか? もし、成立する場合は両者は同時に成り立つということはありえないと思うのですが・・・ 申し訳ありませんが、回答おねがいします。

  • 線形変換の問題。解き方がよくわからないので解いていただけると助かります。

    三次元空間に右手系のxyz直交座標系をとってR^3と同一視し、第一成分、第二成分、第三成分をx座標、y座標、z座標の値とする。 長さ1のベクトルp=(p[1],p[2],p[3])'に対し、以下の行列をPとする。 P=[[0,-p[3],p[2]],[p[3],-0,-p[1]],[-p[2],p[1],0]] さらに、θを定数として、以下の行列 (cosθ)E+(1-cosθ)pp'+(sinθ)P から定まるR^3上の線形変換をTとする。このとき以下の問いに答えよ。 (1).任意のv∈R^3に対して、Pv=p×vとなることを示せ (2).pはTの固有値1の固有ベクトルであることを示せ (3).a×b=pとなるような互いに直行している長さ1の2つのベクトルa,b(∈R^3)に対して、{a,b,p}はR^3の基底となることを示せ (4).(3)と同様の条件をみたしているa,bに対して、基底{a,b,p}に関するTの表現行列を求めよ (5).以上のことを参考にしt、TはR^3上の線形変換としてどの様な変換であるかを答えよ

  • 教えてください。

    夏休み明けのテストで課題の類似問題が出るといわれているのですがその課題の解き方がよく分かりません。解き方を教えてください。 ・(1)R^(3)において、次は基底になることを示せ。       A={v_1=(-1,1,0) , v_2=(3,-1,0) , v_3=(1,2,-1)} (2)R^(3)の線型変換φが、次を満たすとき、φは同型であることを示せ       φ(v_1)=(1,0,0) , φ(v_2)=(4,2,0) , φ(v_3)=(5,6,3) (3)基底Aに関するφ(3,2,-1)の座標を求めよ ・(1)R^(3)において、次は基底になることを示せ       u=(1,1,0) , v=(2,1,1) , w=(3,1,1) (2)R^(3)の線型変換φを       φ(x,y,z)=(2x -y+z , -3y+5z , x+y+2z)     と定めるとき、基底A={u,v,w}に関するφの表現行列を求めよ (3)R^(3)の基本基底からAへの基底変換の行列を求めよ (4)φは同型であることを示せ 以上です。両方とも(1)についてはなんとなく解くことができるのですがそれ以降の問題ができません。特に行列に示すところが分かっていないのでその辺を中心に教えてもらえたらと思います。お願いします。

  • 線形変換について質問です

    三次元空間に右手系のxyz直交座標系をとってR^3と同一視し、第一成分、第二成分、第三成分をx座標、y座標、z座標の値とする。 長さ1のベクトルp=(p[1],p[2],p[3])'に対し、以下の行列をPとする。 P=[[0,-p[3],p[2]],[p[3],-0,-p[1]],[-p[2],p[1],0]] さらに、θを定数として、以下の行列 (cosθ)E+(1-cosθ)pp'+(sinθ)P から定まるR^3上の線形変換をTとする。このとき以下の問いに答えよ。 (1).任意のv∈R^3に対して、Pv=p×vとなることを示せ (2).pはTの固有値1の固有ベクトルであることを示せ (3).a×b=pとなるような互いに直行している長さ1の2つのベクトルa,b(∈R^3)に対して、{a,b,p}はR^3の基底となることを示せ (4).(3)と同様の条件をみたしているa,bに対して、基底{a,b,p}に関するTの表現行列を求めよ (5).以上のことを参考にしt、TはR^3上の線形変換としてどの様な変換であるかを答えよ R^3ってのはRに縦線いれて3乗してるやつです。 (2)はT(p)=1・pを確認するだけなので理解できていますが、他の設問が解けません。 どなたか教えていただけるとありがたいです。

  • 2階のテンソルの座標変換の式が分かりません

    正規直交座標系における2階のテンソルの座標変換(回転操作)について教えて下さい。 座標変換の行列をA その転置行列をtA 座標変換前の2階のテンソルをT 座標変換後の2階のテンソルをT' とすると、 T' = A T tA  …式(1) と表されるところまでは分かるのですが、これを成分で表すと T'ij =aik ajl Tkl  …式(2) となるところが分からず困っています。 どう分からないのかと言いますと、 行列の積の計算には交換則AB=BAが成り立たないと習ったので、 なぜ式(1)のTとtAをひっくり返して式(2)の順番にして良いのかが分からないのです。 詳しい方お教え下さい。

  • 数学の行列の問題です!

    数学の行列の問題がわかりません・・・ わかる範囲でいいので教えてください!    |    | なお|をでっかいカッコとしてみてください     |-1|      |1|     | 0| b1=| 1|   b2=|0|   b3| 1|     | 0|      |1|     |-1| とする。        |2| 2、ベクトル|5|をb1、b2、b3の1次結合で表せ        |9|                        |x| 3、標準基底に関する座標ベクトルが|y|となる                         |z|   R3のベクトルの、基底b1、b2、b3に関する座標ベクトルを求めろ。 4、R3における標準基底から基底b1、b2、b3への基底変換の行列を求めろ。 5、B=(b1、b2、b3)について、BをP^-1BPと対角化するときの正則行列Pの1つを求めろ。 いじょうです。よろしくお願いします。

  • ベクトルの定義について教えてください

     最近ベクトルの定義を見直しているのですが、「座標回転に際して座標変数と同じように変換される三つの量」や「直交座標の座標軸間の角度を直角に保ったまま、原点を変えないで方向だけを変える変換(直交変換)の規則に従って変換される量」という定義がよくわかりません。R^3に限って考えて、具体的にどうわからないのかというと 1.座標回転に際してR^3の要素(まだベクトルかわからない)の変換をどう施すか。または、ベクトルの定義以前に座標回転に対するR^3の要素の変換を定める必要があるのではないか。 2.R^3の要素でありながらベクトルとは認められないもがあるのか。あるとしたらどう示すか。  自分の誤解かもしれませんが、R^3の要素がベクトルかどうかを判断するには、R^3の座標回転による変換とR^3に回転行列の要素をそれぞれかけて足し合わせたものが一致するかを確かめるとすると、R^3が座標回転に際してどう変換されるかを定める必要があると思うのです。どなたかご教授お願いします。