問題解説:曲率に関する問題について

このQ&Aのポイント
  • 原点を中心とする平面上の曲線Cについて、C上の点Pにおける接線の角度θと曲率κの関係について問われています。
  • 曲率κがθの逆数である曲線Cに関するいくつかの問題が与えられています。
  • 具体的な問題として、曲線C上の点Pの座標をθを使って表す微分方程式や、曲線C上の点Pから引いた法線と単位円との関係、また面積の求め方が問われています。
回答を見る
  • ベストアンサー

曲率に関する問題です。

以下の問題がわかりません。どなたか解き方だけでも教えてください。 「を原点とするx-y 平面上の曲線 C について、C 上の点 P におけるCの接線が x 軸の正の方向と反時計回りになす角をθとし、点Pにおける曲線Cの曲率をκとする。  κ=1/θを満たす曲線Cについて、以下の問いに答えよ。ただし、0<θ<πとし、曲線C上の点Pはθ→0で、ある点Aに近づき、その点Aの座標を(1,0)と定める。また、点AからCに沿って測った曲線C上の任意の点までの距離をsとすると、曲率κは dθ/ds で表される。 (1) 曲線 C 上の任意の点Pのx座標およびy座標をθを用いて表せ。 (微分方程式になります) (2) 曲線C上の点Pから法線Lを引く。 (a)Lは単位円と接することを示せ (b)Lと単位円との接点をQとする。線分PQの長さは、点Aから反時計回りに測った円弧AQの長さ   に等しいことを示せ。 (3) 線分 OA, 曲線C, 直線 y=1 および y軸で囲まれた部分の面積を求めよ。」

  • NTIMA
  • お礼率55% (22/40)

質問者が選んだベストアンサー

  • ベストアンサー
  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.1

(1)について回答します。(2)(3)は二次方程式の重根や定積分を使う、 よくある問題です。 (1) 曲線 C 上の任意の点Pのx座標およびy座標をθを用いて表せ。 (微分方程式になります) >κ=dθ/ds=1/(ds/dθ)=1/θだからds/dθ=θ、三平方の定理により (△s)^2=(△x)^2+(△y)^2、(△s/△x)^2=1+(△y/△x)^2 △x→0として(ds/dx)^2=(dy/dx)^2+1、ここでdy/dx=tanθ、 ds/dx=(ds/dθ)(dθ/dx)=θ(dθ/dx)だから θ^2(dθ/dx)^2=tan^2θ+1、dx/dθ=1/(dθ/dx)=θ/√(tan^2θ+1) =θ/√{(sin^2θ/cos^2θ)+1}=θ/√(1/cos^2θ)=θcosθ x=∫θcosθdθ=∫θ(sinθ)'dθ=θsinθ-∫sinθdθ =θsinθ+cosθ+C(定数) θ=0でx=1だからC=0となり、x=θsinθ+cosθ、 dy/dx=(dy/dθ)(dθ/dx)=tanθからdy/dθ=tanθ/(dθ/dx)=tanθ(dx/dθ) dx/dθ=sinθ+θcosθ-sinθ=θcosθだから dy/dθ=tanθ*θcosθ=θsinθ、y=∫θsinθdθ=∫θ(-cosθ)'dθ =-θcosθ+∫cosθ=-θcosθ+sinθ+CC(定数) θ=0でy=0だからCC=0で、y=-θcosθ+sinθ よって、x=θsinθ+cosθ、y=-θcosθ+sinθ・・・答

NTIMA
質問者

お礼

丁寧な回答ありがとうございました。

関連するQ&A

  • 数学の問題です!

    滑らかな曲線Cを考える。C上のx軸、y軸上にない点Pに対してx軸、y軸上への垂線の足をそれぞれQ、Rとする。 (1)曲線Cの軸上にない任意の点P(x,y)で、曲線Cへの法線が線分QRを2等分する。点Pにおける接線の傾きをy'とするとき、y'を変数x、yで表せ。 (2)曲線Cが点(1,2)を通るとき、Cを図示せよ。 よろしくお願いします><

  • 最大.最小の応用問題

    放物線C:y=x2乗-2x+4と直線l:y=x-2がある。C上に点Pをとり、この点を通るy軸に平行な直線を引き、Iとの交点をQとするとき、 (1)点Pのx座標をaとして、線分PQの長さをaで表わせ。 (2)線分PQの長さを最小値とそのときの点P,Qの座標を求めよ。 教えて下さい// お願いしますm(_ _)m

  • 東京都入試・関数のグラフの問題

    この問題はどうすれば解けるのでしょうか? ///////////////////////////////////////////////// 図1(画像添付できなかったので省略します。図2【下のやつ】の点P・Qが線で結ばれていないものです)で、点Oは原点、曲線lは関数y=1/4x²のグラフを表している。 点A、点Bはともに曲線l上にあり、x座標はそれぞれ-4、6である。 点Aと点Bを結ぶ。 線分AB上にある点をPとする。曲線l上にあり、x座標が点Pのx座標と等しい点をQとする。 座標軸の1目盛りを1cmとして、次の各問に答えよ。 【問3】下の図2は、図1において、点Pのx座標が6より小さい正の数のとき、点Pと点Qを結び、2点B,Qを通る直線とy軸との交点をRとした場合を表している。 線分PQの長さが6cmのとき、線分BQの長さと線分QRの長さの比をもっとも簡単な整数の比で表わせ。 ///////////////////////////////////////////////// この問題はどうすれば解けるか、中学3年生に分かるように、詳しく教えてください。お願いします。

  • 都立高校入試の数学問題を解説してください

    先日行われた都立高校の数学入試問題を解いてみていますが、どうしてもわからない問題があります。どなたか解説していただけないでしょうか。 分からないのは以下の問題です。 【数学】大問3-[問2]-(2) http://www.kyoiku.metro.tokyo.jp/press/pr090223n-mondai.htm 2次関数y=1/4X^2のグラフを表す曲線Lがある。 点A,Bはともに曲線L上にあり、座標はそれぞれ(-6,9),(6,9)である。 点AとBを結ぶ。 曲線L上にあり、x座標が-6より大きく6より小さい数である点をPとする。 点Pを通りy軸に平行な直線を引き、線分ABとの交点をQとする。 座標軸の1目盛りを1cmとする。 さらに、 点Pのx座標が正の数であるとき、点Aと点Pを結び、線分APとy軸との交点をRとし、点Qと点R、点Bと点Pをそれぞれ結ぶ。 PQ=AQとなるとき、△RPQの面積は、△PBAの面積の何分のいくつか。 というものです。 基本的なことは理解しているつもりですが、応用力がなくてこういう問題になるとまるで分りません。 よろしくお願いします。

  • 平面図形の問題

    aを正の実数とし、点A(0、a+(1/2a))と曲線C:y=ax^2(x≧0) 曲線C上の点で、点Aとの距離が最小となるものをPとする。 (1)点Oの座標と線分APの長さを求めよ。 (2)曲線Cとy軸、および線分APで囲まれる図形の面積S(a)を求めよ。 (3)a>0のとき、面積S(a)の最小値を求めよ。 また、そのときのaの値を求めよ。 解ける方がいらっしゃいましたら、 ぜひ解説お願いしたいです! よろしくお願いしますm(__)m

  • 高校入試・関数のグラフの問題【3】

    次の問題がどうしてもわかりません。詳しく教えてください。 ========================== 【1】下の図で、点Oは原点、直線lはy=-x+6のグラフを表している。 直線lとx軸、y軸との交点をそれぞれA、Bとし、y軸上の点でy座標が3の点をCとする。 線分AB上を動く点をPとし、2点P,Cを通る直線をm、直線mとx軸との交点をQとする。このとき次の問いに答えよ。 (3)点Pのy座標が3より小さく、△PBCの面積と△PAQの面積が等しくなるとき、点Qの座標を求めよ。 ========================== 力をお貸しください。よろしくお願いします。

  • 数学の問題です!

    媒介変数tにより表示された曲線C:x=(cost)^3、y=(sint)^3、(0≦t≦π/2)上に点P((cosθ)^3、(sinθ)^3)をとる。0<θ<π/2のとき、PにおけるCの接線をlとし、θ=0、π/2のときはそれぞれx軸、y軸をlと定める。このとき、次の問いに答えよ。 (1)0<θ<π/2のとき、lの方程式を求めよ。 (2)0≦θ≦π/2のとき、Pにおいてlに接する半径2の円の中心のうち、第1象限にある点をQとする。Qの座標を求めよ。 (3)PがC上を動くとき、Qの描く曲線の長さを求めよ。 よろしくお願いします><

  • この問題の解法を教えてください!

    2つの曲線は、関数 y=f(x)=3x2(2乗)(x>0)  y=g(x)=19x2(2乗)(x>0) のグラフである。 点Pは、曲線y=f(x)上を、点Qはy軸上を動く。また、点Pを通り、y軸に平行な直線の、曲線y=g(x)との交点をRとする。点Pのx座標がaの時、線分PQ、PRが隣り合う2辺とする平行四辺形が正方形になる。このとき、aの値を求めよ。 問題の答えは、16分の1なのですが、どのように解法していけばよいか、教えてください。

  • 数学の問題です。

    3曲線C1:y=f(x)、C2:y=x^2、C3:(1/2)x^2のグラフが図のようになっている。曲線C2の上の点Pにおいて、y軸に平行な直線を引き、C3との交点をQ、Pにおいてx軸に平行な直線を引き、C1との交点をRとする。曲線C1、C2、線分PRの囲む図形の面積をS1、曲線C2、C3、線分PQの囲む図形の面積をS2とする。 (1)点Pの座標を(u,u^2)、点Rの座標を(v,f(v))とおいたとき、面積S1を定積分を含むuとvの式で表せ。 (2)点Pが曲線C2の上を動くとき、つねにS1=S2が成立する。このとき、関数f(x)を決定せよ。 (1)はS1=∫[0,v]f(x)dx+(2/3)u^3+vu^2になりました。 (2)でS2を計算するとS2=(1/6)u^3になってS1=S2で計算しましたがf(x)まで持っていけません。 詳しく解説していただけないでしょうか。 よろしくお願いします。

  • この問題が解ける人はといてくれませんか

    曲線y=logx(x>0)上の点P(a,loga) (a>1)での接線をLとし、Pからx軸へおろした垂線の足をHとする。さらに、接線Lとx軸、およびy=logxで囲まれた図形の面積をS1、曲線とx軸、および線分PHで囲まれた図形の面積をS2とする。 (1)S1、S2を求めよ。 (2)aー>∞のときのS1/S2・PHの極限を求めよ。