• ベストアンサー

a^b^c^・・・

正数列(a_n)が与えられていて1に収束するとします。 b_1=a_1 b_n={b_(n-1)}^a_n(n≧2) によって数列(b_n)を定めるとします。 (b_n)が収束しない(a_n)の例はありますか?

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

所与の漸化式より、log log b_n = (log log a_1) + Σ(log a_k) です。 log a_n → 0 ですから、これは、結局 0 収束するが Σ は収束しない数列は在るか?という質問です。 log a_n = 1/n などが、その例になるでしょう。

noname#199771
質問者

お礼

ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.2

帰納的にb_n>0だから l_n=log(b_n) とおくと log(b_n)=log(b_{n-1}^{a_n}) =a_nlog(b_{n-1}) l_1=log(a_1) l_n=a_nl_{n-1} ∴l_n=a_na_{n-1}・・・a_2l_1 ∴b_n=e^{l_n}=e^{a_na_{n-1}・・・a_2a_1log(a_1)/a_1} =e^{a_na_{n-1}・・・a_2a_1log(a_1^{1/a_1})} =(a_1^{1/a_1})^{a_na_{n-1}・・・a_2a_1} ここでa_n=(n+1)/nとおくと正数列{a_n}は1に収束します.そして a_na_{n-1}・・・a_2a_1 =(n+1/n){(n/(n-1)}{(n-1)/(n-2)}・・・(2/1) =n+1 ∴b_n=(√2)^{n+1} これはあきらかに正の無限大に発散します. 例:a_n=(n+1)/n

noname#199771
質問者

お礼

ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • a^(b^(c^(・・・)))

    正数列(a_n)が与えられていて1に収束するとします。 各nについて c(n,n)=a_n c(n,k)=(a_k)^c(n,k+1)(1≦k≦n-1) によって定まるc(n,1),・・・,c(n,n)を用い、 b_n=c(n,1)によって数列(b_n)を定めるとします。 (b_n)が収束しない(a_n)の例はありますか?

  • Σa_kとΣb_kを正項級数.lim(a_n/b_n)=0且つΣb_kが収束ならばΣa_kも収束

    [問]Σ[n=0..∞]a_kとΣ[n=0..∞]b_kを共に正項級数とする。 lim[n→∞](a_n/b_n)=0且つΣ[n=0..∞]b_kが収束ならばΣ[n=0..∞]a_kも収束。 を証明したいのですがどうすれば分かりません。 Σ[n=0..∞]a_kが正項級数とlim[n→∞]lim(a_n/b_n)=0より a_n≦0 これからどのようにすればいいのでしょうか?

  • sqrt(a * b) <= 1/2(a+b)

    タイトルの式を見たのですが、これについて Q1. 式の名前はありますか? Q2. 上記が成り立つ条件はありますか? (a, b ともに1以上、など) 数列の収束の部分でn項とn+1項の値を使う部分でこの式が出てきました。

  • 数列91[B]

    数列91[B] 数列{a(n)}を次の式 a(1)=1,a(2)=3,a(n+2)+a(n+1)-6a(n)=0(n=1,2,3,・・・) で定める。また、α、βを a(n+2)-αa(n+1)=β(a(n+1)-αa(n))(n=1,2,3,・・・) を満たす実数とする。ただし、α<βとする。次の問いに答えよ。 (1)a(3),a(4)を求めよ。 (2)α,βを求めよ。 (3)n=1,2,3,・・・に対しb(n)=a(n+1)-αa(n)とおくとき、数列{b(n)}の一般項を求めよ。 (4)n=1,2,3,・・・に対しc(n)=a(n+1)-βa(n)とおくとき、数列{c(n)}は等比数列である。数列{c(n)}の公比と一般項を求めよ。 (5)数列{a(n)}の一般項を求めよ。

  • 正の実数の列{a(n)}においてΣa(n)∈R⇒Σa(n)/n∈R?

    正の実数からなら数列{a(n)}に於いて、 「Σa(n)が収束する⇒Σa(n)/nは収束する」 という命題は正しいかどうか考えてます。 一見,正しいようですがどうやって証明が言えるのでしょうか?

  • 収束しない数列でチェザロ総和みたいなものを考えると

    異なる正の数a,bに対し、 数列a[n]:a,b,a,b,a,b,… は収束しないですが、 S_1[n]=(a[1]+a[2]+…+a[n])/n としたとき、 lim[n→∞]S_1[n]=(a+b)/2 と収束し、そのようなものをチェザロ総和といいます。 では、 S_2[n]=√[(a[1]*a[2]+a[1]*a[3]+…+a[1]a[n]+a[2]a[3]+…+a[n-1]a[n])/{n(n-1)/2}] としたとき、 lim[n→∞]S_2[n] はどうなるのでしょうか? さらに、lim[n→∞]S_3[n]、…、や、それらの収束の相互関係(大小関係や収束のしやすさ)などについて、なにかご存知のことがありましたら教えていただけないでしょうか?

  • 数列が収束するかの証明問題

    数列{a_n}{b_n}を写真のように定める。 (a_n,b_nはすべて正数とする) a_n,b_nが同じ値に収束することをしめしなさいという問題なのですが、 流れとしては、 1) a_n=b_nならば代入すれば、a_(n+1)=b_(n+1) 数学的帰納法(?)で数列{a_n}{b_n}は同じ値に収束する 2) a_n>b_nとして、 b_n=√(b_n*b_n)<√(a_n*b_n)=b_(n+1) a_n=2(a_n)^2/2(a_n)>2a_n*b_n/a_(n)+b_n=a_(n+1) (ここは計算すると、不等号が成り立ちますが、省略します。) またa_(n+1)<b_(n+1) (0<(a_n-b_n)^2から計算すれば出ますので省略します) これをまとめてb_n<a_(n+1)<b_(n+1)<a_nとなる 3) 次にa_n<b_nのときは 上記と同じような計算で b_(n+1)<b_n a(n+1)>a_n a_(n+1)<b_(n+1)がえられる。 2)3)の結果を合わせて a_n>b_nの場合は、a_(n+1)<b_(n+1)に、 a_n<b_nの場合はa_n<a_(n+1)<b_(n+1)<b_n…(1)となる。 nが2以上で(1)が無限に繰り返されていき、a_2<a_3<a_4<a_5<...<b_5<b_4<b_3<b_2が成立するため{a_n}{b_n}はともに有界であり、n=2以上で {a_n}は単調増加、{b_n}は単調減少であるとわかる。よってともに収束する。 数列{a_n}の収束値をA、数列{b_n}の収束値をBとして 与式に代入するとA=Bがえられ、数列{a_n}b_n}は同じ値に収束することがわかる。 といった感じ大まかにはあってますか?

  • {a+b+c}^3-{a^3+b^3+c^3}

    {a+b+c}^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} (ただし、n=1,2,3,4,5) を因数分解するにはどうしたらよいのでしょうか。

  • 漸化式の極限の問題

    0<a(1)<b(2) をあたえて数列a及び数列bを a(n+1)=(a(n)*b(n))^(1/2) , b(n+1)=(a(n)+b(n))/2 (nは自然数) と定義する。このとき、数列a及び数列bが同じ値に収束することを証明せよ。 という問題が分かりません。 どなたかよろしくお願いいたします

  • 数列91[A]

    次の条件で定まる数列{a(n)}について、次の問いに答えよ。 a(1)=3,a(n+1)=3a(n)+2n+3(n=1,2,3,・・・) (1)b(n)=a(n)+n+2(n=1,2,3,・・・)で定まる数列{b(n)}は等比数列となることを示せ。 (2)数列{a(n)}の一般項を求めよ。 (3)数列{a(n)}の初項から第n項までの和を求めよ。