ポアソン方程式とは?成立条件と定理の根拠を解説

このQ&Aのポイント
  • ポアソン方程式は、有界領域Ωで成り立つ微分方程式であり、Δu=fの形を持つ。
  • この方程式の解u(x)は、基本解G(x-y)とf(y)の積の積分で表される。
  • 成り立つ定理によれば、fがヘルダー連続でsuppfが有界ならば、解u(x)はC^2級であり、Δu=fとなる。
回答を見る
  • ベストアンサー

ポアソン方程式について

Ω⊂R^2を有界領域とし、以下のポアソン方程式を考えます。 Δu=f (x∈Ω)--------* ここでG(x)=1/2π・log|x|は基本解です。 ----------------------------------------------------------- このとき、以下の定理が成り立ちます。 「fはR^2でヘルダー連続でsuppfは有界ならば U(x)=∫[R^2]G(x-y)f(y)dyはR^2でC^2級で、Δu=f (x∈R^2)である」 この定理の証明はできたのですが、 「この定理はそもそも何故成り立つのか」 というのを基本解などの性質などから簡潔に説明せよという課題が出ました。 抽象的でよく分からずにいます。 この定理はそもそもどのような根拠から成り立つのでしょうか。 そして、なぜこの定理なのでしょうか。 よろしければどなたか解説をお願い致します><

質問者が選んだベストアンサー

  • ベストアンサー
noname#221368
noname#221368
回答No.2

 たぶんグリーン関数法のイメージをつかめ、という課題だと思います。以下の説明は、結局、定理の証明を、言葉にしただけになる恐れはありますが・・・。  基本解G(x)=1/2π・log|x|は、x=0に特異点を持つデルタ関数δ(0)と、R^2全体に対する、   Δu=δ(0)   (1) の一般解だという事は、良いでしょうか?。同様に、G(x-y)は、x=yに特異点を持つデルタ関数δ(y)と、R^2全体に対する、   Δu=δ(y)   (2) の一般解です。  デルタ関数は、その特異点yを内点として含む任意の領域Sで(y∈S’,S’はSの開核)、   ∫δ(y)ds=1 (積分領域はS)   (3) を満たすので、(1)や(2)のu(x)を発生させる「単位の点源(点Source)」だとみなせます。この性質を、基本解の積分定数を決める時に、使ったはずです。  ところでポアソン方程式は線形です。いくつかの点源k1・δ(y1),k2・δ(y2),・・・があった場合、   Δu=k1・δ(y1)+k2・δ(y2)+・・・   (4) の解は、   u(x)=k1・G(x-y1)+k2・G(x-y2)+・・・=Σki・G(x-yi) (i=1,2,・・・について和をとる)   (5) になります。ここでk1,k2,・・・は適当な実数です。  次にSourceが連続分布する場合です。連続Sourceであるf(x)のx=yの一点の近傍を想像するとそれは、微小点源、   f(y)・δ(y)ds が、そこら中に並んでる状態だとみなせます。何故なら、   ∫f(x)・δ(y)ds=f(y) (積分領域はS)   (6) だからです(デルタ関数の性質)。だとすれば、(5)の伝で、   Δu=f     (7) の解は、そこら中に並んでる微小点源の基本解(のf(y)倍)をかき集めて(i=1,2,・・・,∞について和をとる)、   u(x)=Σf(yi)・G(x-yi)ds=)=∫f(y)・G(x-y)dy    (8) だろう!、という話になります。(8)の積分領域は、fが定義されてる領域Ωです。たぶんΩの外では、f=0という前提があるんだと思います。その場合は、積分領域はR^2でかまいません。  (8)は、数学に厳しい方々からはお叱りを受けそうですが、以上がグリーン関数法の基本的な発想だと思います。デルタ関数がなかった時には、こんなに簡単な説明はできませんでした。標準的な物理数学の本などを読むと、今でもデルタ関数の発想のない証明が、けっこう見られますので、質問者様は、そういう方式の「証明」を行ったのかな?、と想像しました。デルタ関数を使わない証明が、Originalですから・・・。  ちなみに、   U(x)=∫[R^2]G(x-y)f(y)dy   (9) には、留意点が一つあります。それはG(x-y)が、R^2全体に対する基本解である事です。これはΩの境界∂Ωで、境界条件を与えないのと同じです。でも普通は、∂Ωでの境界条件を考慮せざる得ません。  そのためにΔu=f (x∈Ω)に、ガウスの発散定理を適用して部分積分し、境界積分方程式へ変形します。uを境界積分方程式で表すと、∂Ωの境界条件の影響を、陽に扱えるようになるからです。  境界積分法は、今風にアレンジされたグリーン関数法だと思います。

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

証明できたのなら、 それが「何故成り立つのか」の答えです。 他に何が?

qwetyu11
質問者

補足

私はヘルダー連続というのがミソかと想っていたのですが、そうではないらしいので・・・。 基本解のある性質からわざわざ示さなくても明かに分かるらしいです。。

関連するQ&A

  • ポアソン方程式

    ポアソン方程式 ポアソン方程式は、物理学上で「場」に関係する基礎式。 静電場や重力場などの物理的なベクトル場のポテンシャルを表す。 と認識しています(テキストそのままですが・・・)。 ポアソン方程式は、ラプラシアンを使って表すと Δφ(x, y, z) = f(x, y, z)です。 ナブラ、ラプラシアンについては前回の質問で理解出来ました。 ここで,φ(x, y, z)は未知関数またはスカラー関数と呼ばれています。 f(x, y, z)は導関数と呼ばれています。 なぜ、f(x, y, z)は導関数と呼ばれるのでしょうか? 導関数とは,f(x, y, z)を微分した関数のことではないのでしょうか? ポアソン方程式は、導関数から未知関数(スカラー関数)を求める 事が基本だと記載されていました。 ご回答よろしくお願い致します。

  • 微分方程式論について

    微分方程式論について (1) 関数族{f_n|n=2,3,...} f_n:[0,1]→R f_n=(n^2)x (0≦x≦1/n) f_n=-(n^2)x+2n (1/n≦x≦2/n) f_n=0 (2/n≦x≦1) このとき、{f_n}はいかなる関数にも一様収束しないことをε論法で示せ (2) f:R×R≧0→R f(x,y)=√yと初期値問題 dy/dx=f(x,y) y(0)=0・・・(*)について (1)f(x,y)はyに関して局所リプシッツ連続ではないことをε論法で示せ (2)定数c≧0に対して、関数 y_c:R→R≧0 y_c(x)=0 (x≦c) y_c(x)=1/4(x-c)^2 (x>c) は(*)の解であることを示せ (3) Gronwallの不等式{f,g,uは区間I上の連続関数でg(x)≧0とする} u(x)≦f(x)+∫_(x_0→x)g(t)u(t)dt (x>x_0) ⇒ u(x)≦f(x)+∫_(x_0→x)g(t)u(t)exp{∫_(t→x)g(s)ds}dt (x>x_0) を示せ。また、f(x)が非減少関数 ⇒ u(x)≦f(x)exp{∫_(x_0→x)g(t)dt} (x>x_0) を示せ (4) 初期値問題 dy/dx=y y(0)=a についてPicardの逐次近似法により、解を具体的に構成せよ ただし、y(x)の定義域については考えなくてよい これらの解法を教えてください! わからなくて困っています…

  • 微分と積分の順序交換

    熱方程式 Ut-Uxx=0 (t>0,x∈R) の基本解を (4πt)^(-1/2)・exp(-x^2/4t)=K(t,x)とおきます。 φ(x)をR上有界な一様連続な関数と仮定し、 U(t,x)=∫(R~R)K(t,x-y)φ(y)dy (y∈R)とおきます。 このとき (∂/∂x)U(t,x)=∫(R~R)(∂/∂x)K(t,x-y)φ(y)dy を満たすことを示し、U(t,x)が熱方程式を満たすことを示そうとしています。 そこで、 以下の微分と積分を入れ替える定理を使って証明しようとしています。 定理1 h=h(x,y)は(a,b)×Rで定義された関数で、次の性質を持つ (1)ほとんどすべてのyについてhはxの関数とみて(a,b)でC1級である (2)∂h/∂xは(a,b)×Rで可積分とする (3)少なくとも1点c∈(a,b)でh(c,y)はR上可積分とする (4)∫(R~R)(∂h/∂x)dyは区間(a,b)の各点xで連続とする このとき∫(R~R)(∂h/∂x)dy=∂/∂x∫(R~R)h(x,y)dyとなる。 この定理を使って、Uが熱方程式を満たすことに苦戦しています。 どなたか行間の空かない詳しい証明をよろしくお願いします。

  • 大学数学の方程式

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 大学数学の方程式の質問

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 微分方程式のシャルピーの解法について

    シャルピーの解法に沿って2変数関数u=u(x,y)を含めた微分方程式F(x,y,u,p,q)=0 (p=∂u/∂x,q=∂u/∂y)の解を求める際に特性方程式{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]というのがでてきますが、これを導く手順についていくつか分からない点があります。 手順1:pとqを共にx,y,uの関数で表し、p=∂u/∂x=p(x,y,u),q=∂u/∂y=q(x,y,u)とする。 ※質問ですがuはxとyの関数なので、xやyで偏微分すると同じくxとyの関数になると思うのですが、ここではあえてそのxとyの式を変形してu=(x,y)を入れ込むということでしょうか? 手順2:2変数関数u=u(x,y)の全微分duはdu=(∂u/∂x)dx+(∂u/∂y)dy=pdx+qdyとなり、これを変形するとpdx+qdy-du=0となる。この式を(1)とおく。(1)はu=u(x,y)-u=C [Cは任意定数でuは独立変数]の解を持つので、積分可能と言える。 ※質問ですが、"(1)が解u=u(x,y)-u=Cを持つ"というのは一体どうして分かるのでしょうか? また、その後に"積分可能と言える"とありますが、"微分方程式が解をもてば、その微分方程式が積分可能である"とも言えるのでしょうか? 手順2の続きです。 (1)は積分可能条件を満たすので、ベクトルA=[p,q,-1]とおくと、A・(rotA)=0を満たす。これを計算すると、-p(∂q/∂u)+q(∂p/∂u)-{(∂q/∂x)-(∂p/∂y)}=0という関係式が導ける。この式を(2)と置く。 手順3:p,qを求めるためにもう1つ関係式G(x,y,u,p,q)=b(bは定数)を用意する。ここでFもGもx,y,uの関数であることが言える。次に(2)の式を解くために必要な(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)を得るためFとGをx,y,uでそれぞれ偏微分する。 まずxで偏微分すると、Fは(∂F/∂x)+(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)=0,Gは(∂G/∂x)+(∂G/∂p)*(∂p/∂x)+(∂G/∂q)*(∂q/∂x)=0という式になる。 ※ここで質問ですが、これらの式はどう解釈したらいいのでしょうか? 例えばF(x,y,u,p,q)=px-qy-u=0という式があった場合x,y,u,p,qを独立変数ととらえた場合(∂F/∂x)=pという式が出てくると思います。 しかし、(∂F/∂x)とは別に(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)という項があるのを見ると、一体この2つの項はどこから出てきたのかが疑問に思えます。xの関数であるpとqの合成関数の微分のようにも見えます。ただuもxとyの関数であるはずですので、なぜ(∂u/∂x)といった項が出てきていないのか分かりません。 手順3の続きです。 次にFとGをyで偏微分すると、Fは(∂F/∂y)+(∂F/∂p)*(∂p/∂y)+(∂F/∂q)*(∂q/∂y)=0,Gは(∂G/∂y)+(∂G/∂p)*(∂p/∂y)+(∂G/∂q)*(∂q/∂y)=0となる。 最後にFとGをuで偏微分すると(∂F/∂u)+(∂F/∂p)*(∂p/∂u)+(∂F/∂q)*(∂q/∂u)=0,Gは(∂G/∂u)+(∂G/∂p)*(∂p/∂u)+(∂G/∂q)*(∂q/∂u)=0 ※ここでも同じ質問ですが、これらの式はどのように考えたらでてくるのか疑問です。 さらにこの手順に従って進めると上に挙げたFとGをx,y,uで偏微分した6つの式から(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)の値が出てきてこれらを(2)の式に代入することで、最終的に{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]という特性方程式が出て、この中の2つを用いてもう1つのpとqの関係式Gを求めるようです。このFとGからpとqの値が求まるので、これを用いて解を求めるようになっています。 長くなりましたが、私が間違っている箇所も含めて解説していただければと思います。

  • 微分方程式の問題です。

    (x-1) dy/dx - x(4x + 5) + 4(2x + 1)y - 4y^2 = 0 について、 (1)1つの特殊解Yを求めよ。 (2)特殊解Yと関数u(x)を用いて y = Y + 1/u とおき、一般解を求めよ。 という問題なのですが、(1)から解き方がさっぱり分かりません。 分かる方がいらっしゃいましたら教えてください。 よろしくお願いします。

  • 微分方程式の解法について・・・

     一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。    dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます

  • 微分方程式の解法について・・・・

     一次微分方程式では「y=ux」とおき、一般解などを求めていくものが多いように感じられるのですが、 以下のような問題を解くためにはどのように進めていけばいいのでしょうか? 以下の微分方程式の一般解を求めよ。また、u = 2y^2-6yとおくこと。    dy/dx = -(2y^2-6y+4)/x(2y-3) 自分なりに du/dx = du/dy * dy/dx = ~ とし一般解を求めようと努力したのですが、どうしても途中で詰まってしまいます。 どなたか、お力をお貸しください。 また、最後に見難い記述しか出来ないことと、一方的な要望となってしまっていることをお詫び申し上げます

  • 微分方程式に関する問題です。

    (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) (1)f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 (2)因数分解を用いて、f(y) = 0のときの一般解を求めよ。 ********************************************* という問題です。 (1)についてはできましたが、(2)でどのように解けばよいのか分かりません。お願いします。