• 締切済み

大学数学の方程式の質問

数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

一字一句違わぬ質問が, なんで出てくるんだろうね. とりあえず自分で考えてみたら?

参考URL:
http://okwave.jp/qa/q6937414.html
yuko2460427
質問者

補足

理論の本を読み返すと、方程式の導出までは理解できたのですが、実践問題になるとちっともわかりません。 ので、質問させていただいております。

関連するQ&A

  • 大学数学の方程式

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 二次元拡散方程式の一般解が求まりません

    すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(x,y,t)の位置(x,y)と時間(t)のみに依存する関数があり、 拡散方程式 du/dt=D*(d^2u/dx^2+d^2u/dy^2)  (dは本来は偏微分のパーシャルdです。Dは定数) 一辺の長さが1.0の正方形を考えています。(0<x<1 , 0<y<1) 境界条件は、u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(1.0,y,t)=0.0 , u(x,1.0,t)=0.0 です。 初期条件は u(x,y,t)=10.0 です。 すみませんができれば解のみではなく方針までお答えいただけると幸いです。よろしくお願いします。

  • 拡散方程式と波動方程式の初期値・境界値問題です。

    よろしくお願いします。 1、正方形領域 0≦x≦π、0≦y≦πにおいてu(x,y,t)に関する以下の拡散方程式の初期値・境界値問題を考える。 u_t=u_xx+u_yy …(1) u(x,0,t)=u(x,π,t)=u(0,y,t)=u(π,y,t)=0 …(2) u(x,y,0)=x(π-x)y(π-y) …(3) (1)m,nが自然数のとき、f_(m,n)(t)sin(mx)sin(ny)が(1)を満足する特解であるとする。(f_(m,n):添え字) f_(m,n)(t)を求めよ。ただしf_(m,n)(0)=1とする。 (2)(1)、(2)、(3)を満足する解をu(x,y,t)=Σ(∞、m,n=1)a_(m,n)f_(m,n)(t)sin(mx)sin(my)とする。 a_(m,n)を求めよ。 2、同じ方法を用いて、正方形領域 0≦x≦π、0≦y≦πにおける以下の波動方程式の初期値・境界値問題の解u(x,y,t)を求めよ。 u_tt=u_xx+u_yy …(4) u(x,0,t)=u(x,π,t)=u(0,y,t)=u(π,y,t)=0 …(5) u(x,y,0)=x(π-x)y(π-y)、u_t(x,y,0)=0 …(6)

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 微分方程式に関する問題です。

    (dy/dx)^2 + 2(ytan(x))dy/dx = f(y) (*) f(y) = 0 とする。y = (cos x)^2 は、方程式(x)の一つの解である事を証明せよ。 ********************************************* という問題です。 y' = -2sin(x)cos(x) y'' = -2{(cos x)^2 - (sin x)^2} として(*)に代入したのですが、うまく0になりません。 どういうふうに計算すればよいのでしょうか? よろしくお願いします。

  • 微分方程式の解き方

    dx/dt = x - (x + y)(x^2+y^2)^(1/2) dy/dt = y - (x - y)(x^2+y^2)^(1/2) という微分方程式があります。 この方程式の解を厳密に求めることはできないようですが、 (x^2+y^2)^(1/2) = r x = r cosθ y = r sinθ と置くことにより、上記の微分方程式の答えが、 dθ/dt = r dr/dt = r(1-r) を満たすことが分かるそうです。 ところで、上の微分方程式からどうやってこれを導くのでしょうか?勘でしょうか?

  • 微分方程式の問題

    関数y=f(x)が微分方程式 y(d²y/dx²)-(dy/dx)²+y²=0 を満たすとき、この微分方程式の一般解はどうなりますか?

  • 微分方程式について

    次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。

  • 微分方程式論について

    微分方程式論について (1) 関数族{f_n|n=2,3,...} f_n:[0,1]→R f_n=(n^2)x (0≦x≦1/n) f_n=-(n^2)x+2n (1/n≦x≦2/n) f_n=0 (2/n≦x≦1) このとき、{f_n}はいかなる関数にも一様収束しないことをε論法で示せ (2) f:R×R≧0→R f(x,y)=√yと初期値問題 dy/dx=f(x,y) y(0)=0・・・(*)について (1)f(x,y)はyに関して局所リプシッツ連続ではないことをε論法で示せ (2)定数c≧0に対して、関数 y_c:R→R≧0 y_c(x)=0 (x≦c) y_c(x)=1/4(x-c)^2 (x>c) は(*)の解であることを示せ (3) Gronwallの不等式{f,g,uは区間I上の連続関数でg(x)≧0とする} u(x)≦f(x)+∫_(x_0→x)g(t)u(t)dt (x>x_0) ⇒ u(x)≦f(x)+∫_(x_0→x)g(t)u(t)exp{∫_(t→x)g(s)ds}dt (x>x_0) を示せ。また、f(x)が非減少関数 ⇒ u(x)≦f(x)exp{∫_(x_0→x)g(t)dt} (x>x_0) を示せ (4) 初期値問題 dy/dx=y y(0)=a についてPicardの逐次近似法により、解を具体的に構成せよ ただし、y(x)の定義域については考えなくてよい これらの解法を教えてください! わからなくて困っています…