ガロア理論の分解体に関する疑問

このQ&Aのポイント
  • ガロア理論の分解体の存在定理は、体Fの多項式f(x)には必ず分解体が存在することを示しています。
  • しかし、分解体が存在すればf(x)は一次多項式の積として表せるわけではなく、すべての方程式が解けるという意味でもありません。
  • そして、体の拡大においては既知の数のみを基に拡大するのではなく、未知数のままの拡大も考えられます。
回答を見る
  • ベストアンサー

ガロア理論:分解体に関する疑問

下の定理について,よくわからないのでどなたかわかる方教えてください. 分解体の存在定理: 体Fの多項式f(x)には必ず分解体が存在する 1.この定理の意味はどのような考え方に基づいているのでしょうか.間違って理解しているのかも知れません.  1)分解体が存在すれば,f(x)は一時多項式の積として表せるということですが,一次多項式の積として表せるのであれば,すべての方程式が解けるということと同義ではないのでしょうか  2)体の拡大をいう場合既知の数例えば√2を基に行い拡大体F(√2)が構成されることはわかりますが,方程式f(x)の根が存在することは代数学の基本定理で明らかであっても,その根がわからない(解けない)状態で体の拡大は行えると考えているのでしょうか(未知数のままの拡大).  未知数のまま拡大するという意味であれば,分解体の存在定理は当然のことのように見えます. よろしくお願いします.

noname#178429
noname#178429

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

質問文の末尾が、イイトコを突いている。 体 F 上の代数方程式 f(x)=0 の分解体は、 f(x)=0 の解 x=x1,x2,…,xn によって F を拡大した F(x1,x2,…,xn) である。 F が、ある代数閉体 L の部分体であれば、 F⊂L, x1,x2,…,xn∈L だから、L の中で F(x1,x2,…,xn) が定義できる。 解が未知のまま、それに名前をつけて添加した だけであり、存在は当然っちゃ、当然なんだが、 体の添加拡大には、全体を覆う体 L の存在が 先に必要だし、f(x)=0 が L に解を持つように L は代数閉体でなければならない。 F=Q なら L=C とすればよいが、 一般の体 F に対して L が見つけられるか? ということ。ここがボイントかな。 F 係数多項式環 F[X] を f(X) が生成する単項 イデアルで割った商環 F[X]/(f(x)) の分数体が、 具体的に f(x) の分解体と同型だから、 F が一般体の場合は。こっちから攻めれば、 代数閉体 L を探さずに済む。

noname#178429
質問者

お礼

早速回答頂き有り難うございました. 根が未知数の状態であっても分解体をともかく見つける理由は,分解体に対応する群が単位群であることから,ガロア群を正規部分群を使って小さくしていき単位群に到達すれば,そこで打ち止めで後は,組成列が可解の条件を満たすかどうかをチェックすればよいというところに分解体の存在意義はあるのではないかと思うのですがどうでしょうか.

関連するQ&A

  • ガロア理論:未知数の体の拡大

    ガロア理論で体の拡大といえば,通常既知の数,例えば,2のベキ根を添加して拡大すると本に書かれています. しかし,一方では,方程式が解けるということについて,次のようなことも書かれています. "いくつかのベキ根の有理式でf(x)の根が表せるということは,これらの根がすべて,いくつかのベキ根を含む体に含まれることにほかなりません" この記述は一応もっともだと思うのですが,"いくつかのベキ根を含む体"というとき,この拡大体を作るには,ベキ根の中に入る数(前の例でいえば,2)のように予めわかっていなければ,拡大できないのではないかとおもわれますがどうでしょうか.また,一歩譲って,ベキ根の中に入る数を未知数のままで体の拡大を行ったとしても根を求めるために必要ベキ根の値がぴったりと存在するかどうかはどのように保証されるのでしょうか.未知数による拡大しようとすれば,不可算無限のベキ根で拡大すれば,できそうですが,上の記述の"いくつかのベキ根"とは整合が取れません.この辺はどのように考えているのでしょうか. それと,3次方程式の根の公式を見ると,2乗根と3乗根が入れ子になっていますが,このような上の"..."の中に入っているのでしょうか.論理的には入っていないように見えるのですが. お願いします.

  • 最小分解体

    f(X)=X^4-7∈Q[X]として、f(X)のQ上の最小分解体をLとする。 (1) 拡大次数[L:Q]を求めよ。 (2) K=L∩Rとする。Kを分かりやすく記述し、L/Kが2次拡大であることを示せ。 K≠K' だが K`=~K'(同値)となるような体は存在するだろうか? (3) L/Qの中間体で、Qの2次拡大であるものを複数挙げよ。 (4) L/Qの中間体Mで、[M : Q]=4 である体を見つけ、これがある多項式のQ上の最小分解体になっていることを示せ。(具体的に多項式を与えよ) Kは十分に大きいFの拡大体とする。 (5) (X^2-3)(X^3+8)と(X^2-4)(X^4-9)で生成されるQ[X]のイデアルJとするとき、J=(f(X))となるような多項式を求めよ。 わからない問題がたくさんあって申し訳ないんですが、もしわかる方いたらぜ教えていただけたらと思います。

  • ガロア理論:単拡大定理の意義

    ガロア理論で,有理数体を係数体として,その根をx1,x2,...xnとしたとき,これらの根を添加した体Q(x1,x2,...xn)と単拡大定理を使った拡大Q(V(x1,x2,...xn)とはどこが違うのでしょうか.もちろん表現として違うことはわかりますが,この根を変数とするパラメータVが存在することによって,体を扱う上で何が違うのでしょうか.単拡大定理の存在理由が今一つわからないので,教えてください.

  • 最小分解体

    f(X)=(X^4+X^2-6)(X^3-7)∈Q[X]とする。(C[X]においては、f(X)は一次式に分解する。) f(X)のR上の最小分解体Lとその拡大次数[L:R]を求めよ。 Lはなるべくわかりやすく与えること。 ちなみに定義として 拡大K/Fにおいて、KはF上のベクトル空間とみなせる。Fベクトル空間としてのKの基底、および次元をKのF-基底、K/Fの拡大次数と言い、拡大次数を[K:F]と書く。 この問題がわかりません。前にもR上の最小分解体ではなく、Q上の最小分解体について答えていただいたのですが、R上の場合はどうなるのでしょうか。解ける方いたらよろしくお願いします

  • 最小分解体と拡大次数について

    f(X)=(X^4+X^2-6)(X^3-7)∈Q[X]とする。(C[X]においては、f(X)は一次式に分解する。) f(X)のQ上の最小分解体Kとその拡大次数[K:Q]を求めよ。 Kはなるべくわかりやすく与えること。 ちなみに定義として 拡大K/Fにおいて、KはF上のベクトル空間とみなせる。Fベクトル空間としてのKの基底、および次元をKのF-基底、K/Fの拡大次数と言い、拡大次数を[K:F]と書く。 この問題がよくわかりません。解ける方いたらよろしくお願いします。

  • 代数の問題についてです。

    以下の代数の問題について教えてください 1.Q(√2、√3、√5)=Q(√2+√3+√5)となることを示せ。 2.[Q(√2、√3、√5): Q]をもとめよ 3.√2+√3+√5のQ上の既約多項式(最小多項式)を求めよ 4.ωを x^2+x+1 の根としたときQ(3√2(以下、これは2の3乗根) 、ω)の自己同型写像であって3√2とωを入れ替えるものが存在するか? 5.F⊂B⊂E:体の塔、 B: f(x)∈F[x]のF上の分解体、 E: g(x)∈F[x]のF上の分解体 とする。 このとき、写像Ψ : Gal(E/F) → Gal(B/F) <σ → σ|B> は全射であることを示せ。

  • ガロア理論:体の拡大で起こっていること

    ガロア理論の考えでは,基礎体K上の既約多項式の根をすべて添加したガロア体Σをつくる.そのガロア体を基にΣ/Kの自己同型群Gを今度は考える.その自己同型群の中に正規部分群N1を探し,その正規部分群で群Gの剰余群G/N1=G1を作る.また,G1の中に正規部分群を探し,N2とする.G1/N1の剰余群を作り,このやり方を繰り返し,群Gを小さくし,最終的には,単位元のみの群Eまで小さくすると理解しています. さて,正規部分群を使って,小さくしていく場合,対応する体側ではどのような拡大が起こっているのでしょうか.可解であるためには,剰余群の次数が素数であることが求められますが,対応する体の拡大はその素数乗根の共役根による拡大になっているといっていいのでしょうか.

  • ガロアの基本定理の前のところ:2

    ガロアの基本定理の前のところ 以下は,永田「可換体論」の一部ですが、 定理2.7.3. ある可換体の部分体K、L.K’について、K⊆L∩K’とする。 (イ)略 (ロ)LがKの有限次分離的拡大体で、K’がKの正規拡大体であれば、K’(L)はK’の有限次分離的拡大体で、[K’(L):K’]=[L:(K’∩L)] 証明 (ロ)Lを生成する元aのK’∩L上の最少多項式をf(x)とし、f(x)の根をa1、------、ar(r=degf)とする。K’(a)=K’(L)、K’(L)はK’のガロア拡大である。 f(x)がK’上で  Π(x-ai)を因子にもったとする。(a=a1、s≦r)。  i=1~s その係数c1、---、csをとる。ci∈K’. 他方ciは、a1、------、asの整式で表されるからK上分離的。 ゆえにK’に含まれるK’∩Lの有限次ガロア拡大体K'''でc1、- - -、csを含むものがある。 以下は省略しますが、上記のゆえに以下説明くださればありがたいのですが。

  • ガロア拡大についてなのですが…

     代数学の本を読んでいて、ちょっと理解しにくい部分があったので、質問させていただきます。  「体Kを含むような代数体がQ(有理数全体の集合)上のガロア拡大体ならば、Kの原始元αと同時に、αの最小多項式の根α1,α2…,αnを含んでいなければならない」という風に書かれていたのですが…αを含まなきゃならないのはわかるのですが、なぜα1,α2…,αnまで、含む必要があるのでしょうか??  すっきりせず気持ちが悪いので、どなたかお知恵をお貸ししていただけると幸いです。

  • 5次方程式のガロア群について

    5次方程式のガロア群について 以下は有理数体(Q)で考える。 3次方程式f(x)のガロア群は 3次の対象群 f(x)が既約で判別式の値が平方数でない場合 3次の交代群 f(x)が既約で判別式の値が平方数である場合 2次の対象群 f(x)が1次式×2次式と分解できる場合 単位元のみの群 f(x)が1次式×2次式×1次式と分解できる場合 である。 4次方程式f(x)のガロア群は 4次の対象群 f(x)の3次分解式のガロア群の位数=6 4次の交代群 f(x)の3次分解式のガロア群の位数=3 4元数群 f(x)の3次分解式のガロア群の位数=1 Z4 f(x)の3次分解式のガロア群の位数=2 である。 f(x)=x^4+qx^2+rx+s としたとき g(x)=x^3 -2px^2 +(q^2-3s)x + r^2 のg(x)をf(x)の3次分解式という。 さて質問です。 既約な5次方程式のガロア群は何でしょうか。 5次の対象群でしょうか、5次の交代群でしょうか。その他があるでしょうか。 方程式により複数の群があるとした判定基準は何でしょうか。 色々(中島、アルチン、ロットマンの本等)なガロアの理論の本を読んでも書いてません。一般論で書いてある。 5次の具体的な群は何でしょうか。知っていたら教えて下さい。