• ベストアンサー

複素積分

考え方、解き方を教えて下さい。 関数f(z) = Re(z)について曲線Cに沿う積分の値を求めよ。 C: 0から1, 1から1+i , 1+iから0に至る三角形の周 答え・・・(1/2) i C1,C2,C3を図のように定義し、C1: z = t, C2: z = i t , C3:z=(1 - t) + i (1 - t) (何れも0≦t≦1)と考えましたがいくらやっても正しい答えになりません

質問者が選んだベストアンサー

  • ベストアンサー
  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.2

C2は z=1+it ですね。

tki-
質問者

お礼

ありがとうございます。 まちがえた箇所が分かりました

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.1

1.各積分路の上でzをtで表したら、そのときのdzとdtの関係を調べる。 2.各積分路上でのRe(z)をtの式で表す。 3.dzを ☆dt にする。(1を使う) 4.実部と虚部に分けて積分をする。 たぶん、3のところで間違えているのでは??

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分についてです。

    ∫(z^3+5)dz /z{(z-1)^3} の閉曲線Cに沿った積分を求めるのですが、問題は(1)z=0を中心とした半径1/2の円周を反時計回りに一周した積分値。(2)z=0を中心とした半径2の円周を反時計回りに一周した積分値を求めよ。 なのですが、(1)では特異点1を、(2)では特異点0,1をC内部に含んでいて、積分値は0にならず一定の値をとることは分かるのですが、被積分関数がうまく部分分数分解できず、コーシーの積分公式も使えず、値が求められないのですがどうしたらいいのでしょうか・・・・。

  • 複素積分の問題です。

    複素積分の問題です。 複素平面上の3つの曲線 C: z(θ)= 1+1/2re^iθ (0?θ?2π) D: z(θ)= 1+1/2re^iθ (0?θ?4π) C1: z(θ)= 1+1/2re^iθ (0?θ?π) C2: z(θ)= 1+1/2re^(-iθ) (0?θ?π) を考える。このとき、複素積分 ∫_c?1/(z-1)dz,4 ∫_D?1/(z-1)dz, ∫_c1?1/(z-1)dz, ∫_c2?1/(z-1)dz, ∫_c?1/zdz の値をそれぞれ求めよ。またその結果により、どのような定理が立つことが予想されるか。 全然わからないので是非よろしくお願いします。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 複素積分について

    関数f(z)およびCについて、複素積分∫Cf(z)dzを求める f(z)=z^2、C:z=z(t)=(1+i)t (0≦t≦1) f(z)=e^z、C:z=z(θ)=2e^(iθ) (0≦θ≦π) どのようになりますか

  • 積分

    わからない問題があるのですが、 (1) 実数ζ<=0 をパラメータとする有理型関数 f(z) =exp(-iζz)/(1 + z2) ; z2∈ C を考える.実軸上の線分C1 = [-R;R] とRe^iθ (0<=θ<=π) で表される半円C2 からなる閉曲線に反時計回りの向きを入れた積分路をC とする.ただし,R > 1 は定数であるとき、 ∫f(z)dz = πexp(ζ) を示せ. (2)ζ<= 0 のとき ∫[-∞,∞]exp(-iζt)/(1 + t^2) dt =πexp(ζ) を示せ. (3) ζ > 0 のとき ∫[-∞,∞]exp(-iζt)(1 + t^2) dt を求めよ. という問題で、(1)は積分すればいいような気がしたのですが、わかりません。 どなたかよろしくおねがいします。

  • 複素関数の積分について教えてください。

    複素関数で、次のような問題がだされました。 Cをx=cosyに沿って1から-1+πiに至る曲線とするとき、次の積分を求めよ。 ∫c ze^zdz よくわかってないので、次のような回答になってしまいました。 根拠はありません。 f(z)=ze^zは前平面で正則なので、f(z)の原始関数F(z)の原始関数によって ∫c (ze^z)dz=[ze^z](←πiから1まで)-[e^z](←πiから1からまで) =πie^πi-e-(e^πi-e) 以上です。 どなたか、正しい答えを教えてください。

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 複素積分

     Cauchyの積分定理の応用に関する問題(Fresnel積分)に関してですが、テキストなどでは、積分路を扇にとって積分していますが、これを二等辺三角形にして考えています。  まずf(z)=e^(iz^2)として、積分路Cを0,R,(1+i)Rを頂点とする直角二等辺三角形の周とします。ここで、C上の積分∫f(z)dxを考えて、Fresnel積分を導きたいのですが、一部積分評価がわからないところがあり、質問させていただきました。  積分路CをC1(0→R)、C2(R→(1+i)R)、C1((1+i)R→0)、として考え、各積分路の積分をI1,I2,I3とすると、Cauchyの積分定理より、   ∫f(z)dx=I1+I2-I3=0 となり、I1,I3については問題ないのですが、I2の積分評価がうまくできません。  C2をパラメータtを用いて、z=R+it,(0≦t≦R)とすれば、   I2=i∫[0,R] e^(i(R+it)^2) dt    =i∫[0,R] e^{i(R^2-t^2)-2Rt} dt  ----(*) となり、(*)式の積分評価がよくわかりません。R→∞としたとき、I2→0となるのですが、どうやって導いたらよいのでしょうか?どなたか教えていただけないでしょうか?できれば、詳しく教えていただけると大変助かります。  大変読みづらいかもしれませんが、よろしくお願いします。

  • 複素積分

    複素関数f(z)を、   f(z)=(1-e^(2iz))/z^2 (zはC/{0}の元) とします。 (1)z=0におけるローラン展開 (2)R>0に対して、上半円弧CrをCr={z=Re^(iθ) : 0≦θ≦π}とし、   反時計回りに向きを入れるとき、    lim[R→∞] ∫[Cr] f(z)dz という上記の二問についてですが、 (1)について  e^zのテイラー展開にz=2izを代入し   f(z)=(1/z^2){1-(1+z+(z^2)/2!+…}   =-Σ[n=1→∞] (((2i)^n)z^(n-2))/n!  と強引に計算しましたが、これで大丈夫なのでしょうか? (2)について  z=Re^(iθ)を与式に直接代入して、    lim[R→∞] ∫[Cr] f(z)dz    =lim[R→∞] ∫[0,π] {1-e^(2iRe^(iθ))}/{Re^(iθ)} dθ  として、ここから積分評価をしていきたいのですが、どのようにして考えていけばよいのでしょうか?とりあえず、被積分関数の絶対値を考えてみたのですが、うまくいきません。どなたかアドバイスをいただけませんか? 以上の二問ですが、よろしくお願いします。