• 締切済み

複素積分

 Cauchyの積分定理の応用に関する問題(Fresnel積分)に関してですが、テキストなどでは、積分路を扇にとって積分していますが、これを二等辺三角形にして考えています。  まずf(z)=e^(iz^2)として、積分路Cを0,R,(1+i)Rを頂点とする直角二等辺三角形の周とします。ここで、C上の積分∫f(z)dxを考えて、Fresnel積分を導きたいのですが、一部積分評価がわからないところがあり、質問させていただきました。  積分路CをC1(0→R)、C2(R→(1+i)R)、C1((1+i)R→0)、として考え、各積分路の積分をI1,I2,I3とすると、Cauchyの積分定理より、   ∫f(z)dx=I1+I2-I3=0 となり、I1,I3については問題ないのですが、I2の積分評価がうまくできません。  C2をパラメータtを用いて、z=R+it,(0≦t≦R)とすれば、   I2=i∫[0,R] e^(i(R+it)^2) dt    =i∫[0,R] e^{i(R^2-t^2)-2Rt} dt  ----(*) となり、(*)式の積分評価がよくわかりません。R→∞としたとき、I2→0となるのですが、どうやって導いたらよいのでしょうか?どなたか教えていただけないでしょうか?できれば、詳しく教えていただけると大変助かります。  大変読みづらいかもしれませんが、よろしくお願いします。

  • gekku
  • お礼率100% (1/1)

みんなの回答

  • e_o_m
  • ベストアンサー率58% (30/51)
回答No.1

複素積分の評価でよく使う不等式として |∫f(z)dz|≦∫|f(z)|*|dz| があります。 今回の場合もこれをつかってやれば |I2|≦=∫[0,R] e^(-2Rt) dt={1-e(-2R^2)}/(2R)→0 (R→∞) と評価出来ますね。 蛇足として、すでによくご存じかもしれませんが、複素積分の評価でもう一つよく使われる定理としてJordanの補助定理があります。 原点を中心とした半径Rの上半平面にある半円Cを積分路にとり、"a>0"のとき ∫exp(iaz)f(z)dz→0 (R→∞) ただし、f(z)は|z|→∞で一様にゼロに近づくとする。 この定理は先ほどと同様の積分評価をしてやれば示せますので、実際知らなくても大丈夫です。が、この形の積分形はフーリエ変換等々で頻繁にお目にかかるので、知っておいた方がよいかと思われます。

gekku
質問者

お礼

ご返答ありがとうございます。積分評価がかなり苦手ですので、補足までしていただき、勉強になりました。Jordanの補助定理も一度確認しておきたいと思います。どうもありがとうございました。

関連するQ&A

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分について

    関数f(z)およびCについて、複素積分∫Cf(z)dzを求める f(z)=z^2、C:z=z(t)=(1+i)t (0≦t≦1) f(z)=e^z、C:z=z(θ)=2e^(iθ) (0≦θ≦π) どのようになりますか

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • 複素積分

    複素関数f(z)を、   f(z)=(1-e^(2iz))/z^2 (zはC/{0}の元) とします。 (1)z=0におけるローラン展開 (2)R>0に対して、上半円弧CrをCr={z=Re^(iθ) : 0≦θ≦π}とし、   反時計回りに向きを入れるとき、    lim[R→∞] ∫[Cr] f(z)dz という上記の二問についてですが、 (1)について  e^zのテイラー展開にz=2izを代入し   f(z)=(1/z^2){1-(1+z+(z^2)/2!+…}   =-Σ[n=1→∞] (((2i)^n)z^(n-2))/n!  と強引に計算しましたが、これで大丈夫なのでしょうか? (2)について  z=Re^(iθ)を与式に直接代入して、    lim[R→∞] ∫[Cr] f(z)dz    =lim[R→∞] ∫[0,π] {1-e^(2iRe^(iθ))}/{Re^(iθ)} dθ  として、ここから積分評価をしていきたいのですが、どのようにして考えていけばよいのでしょうか?とりあえず、被積分関数の絶対値を考えてみたのですが、うまくいきません。どなたかアドバイスをいただけませんか? 以上の二問ですが、よろしくお願いします。

  • 積分

    わからない問題があるのですが、 (1) 実数ζ<=0 をパラメータとする有理型関数 f(z) =exp(-iζz)/(1 + z2) ; z2∈ C を考える.実軸上の線分C1 = [-R;R] とRe^iθ (0<=θ<=π) で表される半円C2 からなる閉曲線に反時計回りの向きを入れた積分路をC とする.ただし,R > 1 は定数であるとき、 ∫f(z)dz = πexp(ζ) を示せ. (2)ζ<= 0 のとき ∫[-∞,∞]exp(-iζt)/(1 + t^2) dt =πexp(ζ) を示せ. (3) ζ > 0 のとき ∫[-∞,∞]exp(-iζt)(1 + t^2) dt を求めよ. という問題で、(1)は積分すればいいような気がしたのですが、わかりません。 どなたかよろしくおねがいします。

  • 複素関数の周積分の問題です。

    問題は次の二つです。  ∫dz/(z-3i) 積分経路は |Z|=π で反時計まわり。  ∫(exp(z)/z)dz 積分経路は |Z|=2で反時計と|Z|=1で時計まわり。  初めの問題はコーシーの積分定理を使えば2πiになるのは、理解できるのですが、積分定理を使わずに与えられた積分経路で積分をしていった所(z(t)=πexp(it)とした。)、[log|πexp(it)-3i|] tの区間0~2π となりこれを計算すると0になってしまいました。なぜ答えが違うのでしょうか。 二番目の問題もコーシーの積分定理を使って二つとも同じ原点を中心とした半径rの円の積分経路に置き換えれば、0になることはすぐわかるのですが、定理を使わずに計算していった所∫iexp(exp(it))dtや∫iexp(2exp(it))dtといった項が出てきてこれが計算できないのです。この問題は大人しく定理を使わなければ解けない問題なのでしょうか。 以上の2点が分からず困っています。どなたかお力をお貸しください。 よろしくお願いします。

  • 複素積分 ∫[-∞→∞] (sinx)/x dxについて

    ∫[-∞→∞] (sinx)/x dx=π について教科書の解説を見ても理解出来ないところがあったので教えてください。 手持ちの教科書では次のような流れで計算をしていました F(z)=exp(iz)/zとおく F(z)はz=0に1位の極を持つのでz=0を避けるような経路C(添付図)をとる … (1) D2は半径εの半円弧である F(z)はCで正則なので∫[C] F(z)dz = 0 … (A) F(z)の経路C=R+U+L+D1+D2+D3においてR,U,Lでの積分は0(証明長くなるので省略) また、D2での積分は ∫[D2] F(z) dz = ∫[D2] {F(z)-(1/z)} dz +∫[D2] (1/z) dz と分けるとF(z)-(1/z)はz=0で正則なのでε→0のとき積分の値は0 … (2) ∫[D2] (1/z) dz は z=εexp(iθ)とおいて計算すると-πiになる (A)でX,Y→∞ ε→0とすると ∫[-∞→∞] (exp(ix)/x dx - πi =0 …(B) exp(ix)=cos(x)+isin(x)より、 ∫[-∞→∞] (cosx)/x dx + i∫[-∞→∞] (sinx)/x dx = πi 両辺の虚部をとって 虚部をとって∫[-∞→∞] (sinx)/x dx=π ここまでが教科書での解答の大まかな流れです 疑問点は以下のとおりです A:(1)で0を避けた理由 B:(2)でF(z)=F(z)-(1/z)+(1/z)と分けたのはどこから来たのか C:(2)でF(z)-(1/z)はz=0で正則とあるがz=0で1/zは定義できないのに正則? D:D1とD3は回答中で触れてないが無視していいのか E:この問題はタイトルの積分を留数定理で解けという問題だったのですが留数定理使ってないような? 長くなりましたがよろしくお願いします

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分

    考え方、解き方を教えて下さい。 関数f(z) = Re(z)について曲線Cに沿う積分の値を求めよ。 C: 0から1, 1から1+i , 1+iから0に至る三角形の周 答え・・・(1/2) i C1,C2,C3を図のように定義し、C1: z = t, C2: z = i t , C3:z=(1 - t) + i (1 - t) (何れも0≦t≦1)と考えましたがいくらやっても正しい答えになりません