• ベストアンサー

大学の数学(極限)

次の極限値は存在するか。存在するならば、その値を求めよ。 (1) lim (x,y)→(0,0)( sin(πx)sin(πy))/(sin^2(πx)+sin~2(πy)) 御教授宜しくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

まず,(x,y)→(0,0)⇔√(x^2+y^2)→0だから|x|≦√(x^2+y^2),|y|≦√(x^2+y^2)よりx→0かつy→0です. また,sinx→x(x→0)です. よって, sinπxsinπy/(sin^2πx+sin^2πy)→π^2xy/{π^2(x^2+y^2)}=xy/(x^2+y^2) x=ρcosθ,y=ρsinθとおくと,(x,y)→(0,0)⇔ρ→0で xy/(x^2+y^2)=ρ^2cosθsinθ/ρ^2=cosθsinθ=(1/2)sin2θ これはθの値により0だったり1/2だったりして一定の値に近づかないから,極限は存在しません.

その他の回答 (1)

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

y軸に沿って(0,0)に近づけると lim y→0{lim x→0( sin(πx)sin(πy))/(sin^2(πx)+sin~2(πy))} =lim y→0( 0sin(πy))/(0+sin~2(πy)) =lim y→0(0/(0+sin~2(πy)) =lim y→0 0 =0 y=xの直線に沿って(0,0)に近づけると lim y→0{lim x→y( sin(πx)sin(πy))/(sin^2(πx)+sin~2(πy))} =lim y→0(sin^2(πy))/(2sin~2(πy)) =lim y→0 1/2 =1/2 (x,y)→(0,0)の極限の取り方により極限値が異なるので 極限値は存在しない。

関連するQ&A

  • 三角関数の極限

    次の極限値は存在するか。存在するときはその値を求めよ。 (1)lim[x→0]sin(1/x) (2)lim[x→0]xsin(1/x) (3)lim[x→∞]sin(1/x) 答えはそれぞれ、存在しない、0、0なのですが、理由が全く分かりません。 (1)では存在しなかった極限がsinの前にxがつくだけで極限値を持つことや、同様にx→0が x→∞に変わっただけで極限値を持つことが理解できません。 lim[x→∞]sinxθ/x であれば、はさみうちの原理を利用すれば解けるのですが、この問題はどう解いたらよいのか分かりません。 教えてください。

  • 数学の宿題(極限値)です。

    以下の問題なのですが、どのような答えになるのでしょうか。解き方を教えていただけると助かります。 極限値を求めよ。ただし存在しないときは存在しないと答えること。 (1) lim(x,y)→(0,0)    x^2y/(x^2+y^2) (2) lim(x,y)→(0,0)  (3x^2+2y^2)/(2x^2+3y^2) (3) lim(x,y)→(0,0)  (3x^2 - x^2y + 3y^2)/(2x^2+3y^3 + 2y^2) (4) lim(x,y)→(0,0)   xlog(x^2 + y^2) (5) lim(x,y)→(0,0)   ( sin(2x^2 + 2y^2) ) / ( tan(x^2 + y^2) )

  • 累次極限について

    多くのサイトを拝見したところ、累次極限の性質として、 「lim_{(x,y) → (a,b)} f(x,y) = A     (1)が存在するとき、二つの累次極限 lim_{x → a} { lim_{y → b} f(x,y) },     (2) lim_{y → b} { lim_{x → a} f(x,y) }     (3) が存在し、ともにAである」・・・・・(☆) というのがありましたが、私が今読んでるワンポイント双書では、3つの極限が存在したとき3つのあたいが等しいと書いてあり、また、xy=0のときf(x,y)=(x)sin(1/y)+(y)sin(1/x)でxy≠0のときf(x,y)=0とすると(1)は存在しますが(2)と(3)は存在しません。 一体どっちが正しいのでしょうか。 (☆)の証明も読んでも理解できないので質問しました。 できれば正しい方のとてもわかりやすい証明を解説してくれると非常にありがたいです。 よろしくお願いします!

  • 級数の極限値

    次の級数の極限値について、求め方を教えてください。 lim{x→+0,y→1-0}Σ{n=0,∞}y^n*sin((2n+1)x)/(2n+1) 値は x と y の近づき方によって変わるようです。 sin(a)≒a とみなし 与式≒lim{x→+0,y→1-0}Σ{n=0,∞}y^n*x =lim{x→+0,y→1-0}x/(1-y) となるかと思ったのですが、与式を計算してみると x/(1-y)=1 の時の値は 0.55 位でした。 ※その計算が間違いという可能性もあります。 正しい求め方はどうするのでしょうか? なお、与式=0.5 とした時の x と y の関係を求めるのが最終目的なんです。

  • 数学の極限の範囲です

    1.a>1のとき極限lim(x→π)sinax/sinxが正の値に収束するためのaの条件を求めよ。 2.1の条件を満たすaに対して極限lim(θ→+0) sin{a(1-θ)π/θをaを用いて表せ。 3.1の条件を満たすaに対して、f(θ)=sin{(a-1)(1-θ)π}+2sin{a(1-θ)π}+sin{(a+1)(1-θ)π}とする。 このとき極限lim(θ→0)f(θ)/θ^3をaを用いて表せ。 解 1.aが3以上の奇数 2.aπ 3.aπ^3 どうしたらいいか分かりません お願いします。

  • 二変数関数の極限値なのですが

    いつもお世話になっています。学生です。 微分積分学を読んでいるのですが、不明な所に来てしまい、 質問させていただきました。 まず、 lim[x,y→0,0]xy^2/(x^2+y^2) を求めよということなのですが、 簡単なやり方として極座標変換して lim[r→+0]r^3*Cosθ(Sinθ)^2/r^2≦lim[r→+0]r=0 とすると思います。あるいは |xy^2/(x^2+y^2)|≦|x|→0 ですよね。これはいいのですが、この問題の注のところに y=mxとして[x,y→0]のときx→0となることを利用して lim[x,y→0,0]xy^2/(x^2+y^2) =lim[x→0]m^2x^3/(1+m^2)x^2 =0 とするのは誤りとありました。特定の直線族に沿う近づき方 をしているからいけないということで納得はいきました。 しかし次の問題の別解は叙上のようにy=mxとするやり方でした。 lim[x,y→0,0](y^3+y^2)/(x^2+y^2) ところでこれも同様に極座標変換でいくと、最終的に lim[r→+0](Sinθ)^2+r(Sinθ)^3=(Sinθ)^2 となって、θの値によってバラバラだから極限値なしが正解です。 別解は、y=mxとおいて lim[x→0](m^2+m^3*x)x^2/(1+m^2)x^2 =lim[x→0](m^2+m^3*x)/(1+m^2) =m^2/(1+m^2) =0,1/2 (∵m=0とm=1) よって極限なし。 先の問題でこのような解法は駄目となっていたのに対し 後の問題ではなぜいいのか分かりません。 それから一番最後で 「0,1/2 (∵m=0とm=1)」とわざわざ特定の値を書いているのは なぜでしょうか。たまたま具体例を示しただけでしょうか。 以上二つ疑問があります。 分かる方ご教授願います。よろしくお願い致します。

  • 2変数関数の極限値の解き方(色々なケース)

    以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが 計算結果が正しいか自信がありません。 わかる方、ご指導よろしくお願いいたします。 【問題】 次の極限値は存在するか。存在する時には、その極値を求めよ。 (1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)は極限値は0をとる。 (2) lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x^2+2y^2)/√(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x^2+2y^2)/√(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)は極限値は0をとる。 (3) lim [(x,y)→(0,0)] (xy)/(x^2+2y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (xy)/(x^2+2y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (xy)/(x^2+2y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)は極限値は0をとる。 (4) lim [(x,y)→(0,0)] (x-y^2)/(x^2-y) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x-y^2)/(x^2-y) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x-y^2)/(x^2-y) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)は極限値は0をとる。 (5) lim [(x,y)→(0,0)] (y^2)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (y^2)/(x^2+y^2) = 1 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (y^2)/(x^2+y^2) = 0 上記より、異なる近づけ方をすると極限値が1つに定まらない。 よって、lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)は極限値を持たない。 (6) lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x^2-y^2)/(x^2+y^2) = -1 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x^2-y^2)/(x^2+y^2) = 1 上記より、異なる近づけ方をすると極限値が1つに定まらない。 よって、lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)は極限値を持たない。 (7) lim [(x,y)→(0,0)] (xy)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (xy)/(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (xy)/(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (xy)/(x^2+y^2)は極限値は0をとる。 (8) lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x^2y)/(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x^2y)/(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)は極限値は0をとる。 もし、導き方がおかしいようなら、ご指摘いただければと思います。 以上、ご指導のほどよろしくお願いします。

  • 数学(iii)の極限について

    数学(iii)の極限について 教科書の極限を予習しているのですが、よく分からないところがありました。 例題で次の定数a , b を求めよ。という問題です。 問題がみにくくてすみません。分数の場合 lim は全部に = の前まで全てにかかっていると考えてください。できるだけ、縦でそろえていますが・・ lim  a√x + b x→1 -------- = 2      x - 1 という問題で、考え方として、 x→1のとき(分母)→0であるから、与えられた極限値が存在するためには、x→1のとき(分子)→0でなければならない。 とあり、次に解き方が書いてあります。 lim  a√x + b x→1 -------- = 2      x - 1 において、lim(x - 1) = 0 であるから ・・・・・・・・・・・(1)       x→1 lim(a√x + b) = 0 ・・・・・・・・・・・・・・・・・・・・(2) x→1 とありますが、ここが全く分かりません。どうして、(1)だから(2)なのでしょうか? ですから、上の示した考え方のところから全く分かりません。 できるだけわかりやすく教えてくださるとありがたいです。 よろしくお願いします。

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 極限について

    次の2つの極限値とその求め方、教えて下さい。 ( 1 ) lim( n -> ∞ ) [ 2 ^ n sin { θ / 2 ^ ( n - 1 ) } ] ( 2 ) lim( n -> ∞ ) [ 2 ^ n tan { θ / 2 ^ ( n - 1 ) } ] ただし、lim( x -> 0 ) ( sin x / x ) = 1 は使えないものとします。なぜなら、この式の証明の中で使われているからです。 よろしくお願いします。