微分積分と極限の問題についての質問

このQ&Aのポイント
  • 微分積分と極限に関する問題を解く際、一部理解ができていない箇所があります。具体的には、問題の極限について理解が不十分で、解法に誤りがある可能性があります。
  • 質問者は問題における極限の解法について、調和級数の性質を考慮しているものの、解法がうまくいっていないようです。適切な解法や解答へのアドバイスが求められています。
  • この質問は、微分積分と極限に関する問題の一部であり、質問者は特に(4)の極限について疑問を抱いています。問題の内容や解法、特に(1)と(2)の手順に誤りがある可能性があります。
回答を見る
  • ベストアンサー

微分積分、および極限の問題です。

問題が書いてある画像を添付しています。 微積の問題なのですが、(4)が分かりません。。 今までの解いた流れとしては、下記のようになってます。 (1)fn(x)については帰納法で、 fn(x) = e^(-x)+e^(-2x)+e^(-3x)+...+e^(-nx) となったので、Fn(x)=Σ(k=1,n) 1/k となりました。 (2)∫(1,n) e^(-xy)dy = (-1/n)e^(-nx) + e^(-x) となることから、両辺をxで微分して(-1)倍すると、 -∫(1,n) xe^(-xy)dy = e^(-x) - e^(-nx) これをgn(x)に代入してから問題の積分を解くと、答えは Gn(x) = 1-1/n^2 となりました。 (3)Fn - Gn = (1 + 1/2 + 1/3 + ... + 1/n) - (1 - 1/n^2) なので、明らかに正としました。 (4)極限ですが、これは調和級数の最初の1がなくて最後に+1/n^2がついているものなので 無限大に発散すると思ったのですが、それだと問題と合わないため解けないでいます。 もしかすると(1),(2)のどこかで違ったのでしょうか・・? どなたか、ご教授お願いいたします。。

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

(2)の計算が間違っている・・・! Gn = logn (logの底は自然対数)となる。 ・・・・なので(3)以降も考え直す必要がある。 (4)はFn-Gn = γ (n→∞)(γ:オイラー常数)に収束する。

moonstarv
質問者

補足

ありがとうございます。 すみませんが、(2)がなぜlognになるのか分かりません…。 どのように計算されたのでしょうか? それと、lognとなると(3)も(4)もちょっと自分には分からないので、 オイラー常数をちょっとぐぐってきます。

関連するQ&A

  • 極限の問題です

    f(x)=e^π/2×cosπ/2の代n次導関数をfn(x)とする n=1~∞Σf2n(0)の収束発散を調べ収束するなら収束値を調べよ 数学的帰納法によりfn(x)=(1/√2×e^-π/4)^n×f(x+nπ/2)を調べさせる問題が前問で、 それを利用して、S2n+2とS2nを求めようと思ったんですがそれが出来ません 方針ミスでしょうか

  • 非有界区間の積分と極限

    ∫[0,∞]e^(-x^2)dx=√π/2 を示すために e^x>x+1(x≠0)(x=0での一次近似) より 両辺にx=x^2とx=-x^2を代入すると 1-x^2<e^(-x^2)<1/(1+x^2)……(1) (1)のそれぞれのグラフの形に留意しながら定積分の値を定めて それぞれをn乗してから定積分しても大小関係は変化しないので ∫[0,1](1-x^2)^ndx<∫[0,∞]e^(-nx^2)dx<∫[0,∞]1/(1+x^2)^ndx ここで x=cosθと置換すると ∫[0,1](1-x^2)^ndx=∫[0,π/2]sin^(2n+1)θdθ x=1/tanθと置換すると ∫[0,∞]1/(1+x^2)^ndx=[0,π/2]sin(2n-2)dθ また I_n=∫[0,π/2]sin^nθdθ は1≦nにおいて I_2n=π/2・1/2・3/4・5/6・7/8…(2n-1)/2n=πΠ[k=1,n](2k-1)/2k I_(2n+1)=1・2/3・4/5・6/7・8/9…2n/2n+1=Π[k=1,n]2k/(2k+1) となる。 更に √n・x=yとおくと ∫[0,∞]e^(-nx^2)dx=1/√n∫[0,∞]e^(-y^2)dy なので 求める定積分は √n・I_(2n+1)<∫[0,∞]e^(-x^2)dx<√n・I_(2n-2) ここまでは自力でたどり着いたのですが lim[n→∞]I_(2n+1)→√π/2 が示せなくなってしまいました。。。 これさえ示せれば証明できるのですが。。。 どなたかご教授お願いします。

  • 極限関数・一様収束

    fn(x)=xe^-nxの[0,∞)における極限関数lim(n→∞)fn(x)を求めよ。 また、一様収束かどうか調べよ。 という問題が出たのですが、まったくわかりませんでした。。 教えてください。 お願いします。

  • 積分の問題です。

    積分の問題です。 下では積分区間をaからbなら∫[a,b]、絶対値を|a|、累乗をa^xとしています。 見辛くて申し訳ないです。 問 lim[n→∞]∫[0,π]x^2|sin(nx)|dxを求めよ 私の解答を書くので、どこが間違っていてるのか、どうすべき教えてもらえないでしょうか? 解) nx=kπとなるとき、|sin(nx)|=0 ∴X(k)=kπ/n (k=1,2,…,n)とすると、 ∫[0,π]x^2|sin(nx)|dx =Σ[k=1,n]∫[X(k-1),X(k)]x^2|sin(nx)|dx と表せる ここで、X(k-1)≦X≦X(k)において、 {X(k-1)}^2≦X^2≦{X(k)}^2 より、各辺に|sin(nx)|をかけて {X(k-1)}^2|sin(nx)|≦X^2|sin(nx)|≦{X(k)}^2|sin(nx)| また、|sin(nx)|の周期性より、 ∫[X(k-1),X(k)]|sin(nx)|dx =∫[0,π/n]sin(nx)dx =[0,π][-cos(nx)/n] =2/n さらに、ここでy=|sin(nx)|x^2 のグラフを考えて 面積で不等式を作ります。 本来は図示していますが、ここでは式のみを書きます。 {π{X(k-1)}^2}/n <∫[X(k-1),X(k)]x^2|sin(nx)|dx <{π{X(k)}^2}/n ∴Σ[k=1,n-1]{π{X(k-1)}^2}/n <Σ[k=1,n]∫[X(k-1),X(k)]x^2|sin(nx)|dx <Σ[k=1,n]{π{X(k)}^2}/n 上の不等式の左側を計算すると、 {(1-1/n)(1+1/n+1/n^2)π^3}/3 nを∞に飛ばすと (π^3)/3 右側も同じになるので(実際は計算していますが省略します) はさみうちの原理より (与式)=(π^3)/3 これが私の解答なのですが、実際は(2π^2)/3になるのです。 どうかよろしくお願いします

  • 一様収束の問題を教えて下さい。

    以下の3問です。どれかでも結構です。fn(x)が一様収束するかという問題です。 (1)区間I=[0,1]、 fn(x)= nx(0≦x≦1/nのとき) 2-nx(1/n≦x≦2/nのとき) 0(2/n≦x≦1のとき) (2)区間I=[0,1]、 fn(x)= 1-nx(0≦x≦1/nのとき) 0(1/n≦x≦1のとき) (2)区間I=(0,1]、 fn(x)= 1-nx(0<x≦1/nのとき) 0(1/n≦x≦1のとき) よろしくお願いいたします。

  • 極限の証明

    I x>0で、任意の自然数nに対し    e^x > Σ(x^k/k!) (Σはk=0~n)   が成り立つことを示せ。 II 任意の自然数nに対し、x→+∞のとき    lim(x^n/e^x)=0   が成り立つことを示せ。 Iは帰納法で証明しようと思うのですが、 x=1のとき、e>Σ(1/k!) x=nのとき成り立つと仮定するとe^n> Σ(n^k/k!) ここで行き詰ってます。全然ですが何かアドバイスください。 IIははさみうちで ?<x^n/e^x<? →0という感じでしょうか? ?の部分がわからないのでこちらについても何かお願いします。

  • 解析学の極限関数の存在をを示す問題を教えて下さい

    解析学の、極限関数が存在する事を示す問題を教えて下さい。 この問題が難しくて困っています。 関数列{fn(x)}を fn(x)=(1-x^2/1^2)×(1-x^2/2^2)×・・・×(1-x^2/n^2) ※n=1,2,3,・・・ で決める。 この時極限関数lim(n→∞)fn(x)が存在する事を示しなさい。 という問題です。 分からず困っています。教えて下さい。 一応ヒントが書いてあり、 「0<|x|,1についてはそのまま考えてよい。|x|>1の場合はN>|x|を固定し gn(x)=(1-x^2/N^2)×(1-x^2/(N+1)^2)×・・・(1-x^2/n^2) (n=N,N+1,N+2,・・・) の収束から考えると良い」 とあるのですが、分からず困っています

  • 数学3の数列の極限 無限級数の問題がわかりません。

    数学3の数列の極限 無限級数の問題がわかりません。 fn(x)={(tanx)^(2n+1)-(tanx)^n+1}/{(tanx)^(2n+2)+(tanx)^2n+1} (0<=x<π/2)とする。 f(x)=lim[n→∞] fn(x) を求め、関数y=f(x)のグラフの概形をかけ。 わかりません。。 お願いします!

  • 積分の問題

    [0,1]上の皮膚連続関数f(x)に対して、[0,1]上の関数列{Fn(x)}n≧0を以下により定める。 F0(x)=f(x), Fn(x)=∫0 x Fn-1(t)dt (n≧1) この時次の問いに答えなさい。 (1) f(x)=xとおいたとき、Fn(x)を具体的に求めなさい。 (2) n≧1の時、Fn(x)は単調非減少な微分可能関数であることと、不等式 Fn+1(1/2)≦ Fn+1(1)/2が成り立つことをそれそれ示しなさい。 (3)n≧1の時、各x∈[0,1]に対して不等式Fn+1(x)≦ Fn(x)xが成り立つことを示しなさい。 (4)n≧2の時、Fn+1(1)≦ 3Fn(1)/4を示しなさい。(ヒント:積分区間を[0,1/2]と[1/2,1]に分けて評価する) (5){Fn(x)}は[0,1]で0に一様収束することを示しなさい。 これらの問題です。 (1)は帰納的に求めていきたいです。 教えていただけませんか?お願いします。

  • 不等式の帰納法&極限 ?? の問題

    関数f(x)=4x-x^2に対し数列{a_n}を a_1=c、a_n+1=√f(a_n)(n=1,2,3・・・) で与える。ただしcは0<c<2を満たす定数である (1)a_n<2、a_n<a_n+1(n=1,2,3・・・) (2)2-a_n+1<{(2-c)/2}(2-a_n)(n=1,2,3・・・)を示せ。 (3)lim(n→∞)a_nを求めよ この問題に取り組んでいます (1)ができなくて困っています。 帰納法を使うのではないかと思い、n=1のときに成り立ち、n=kのときにa_k<2が成り立つと仮定したとことまではいいのですが、n=k+1のときにa_n+1=√f(a_n)の式と仮定をなんとか使って示したいのですがa_k+1<2√2としか変形できませんでした。何が悪いのでしょうか?それとも帰納法ではないのでしょうか? a_n<a_n+1も同じようなところで変形ができなくて困っています。 回答いただければ幸いです。よろしくお願いします