• 締切済み

可換でない環上での(x+y)^nの展開

普通の可換環上で、(x+y)^n を展開すると、x^i y^(n-i)の係数は、二項係数n_C_iですが、可換でないとき、前からn項目は簡単に表現できるのでしょうか?(xxxyxxyxyとかの表現になると思います)

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.5

いや, 「現れる項」と言い換えても同じこと. 「どのような順に現れるのか」をきちんと指定しないと. エスパー的には「2進表記」とか言ってみるといいかもしれない. もちろん 0 からはじまる.

全文を見る
すると、全ての回答が全文表示されます。
  • ramayana
  • ベストアンサー率75% (215/285)
回答No.4

xとyから重複を許してn個並べるすべての順列が現れるのではないでしょうか。で、項数は2^n個になります。ただし、同じ文字が並ぶところは、累乗に書き直す約束にします。 例  (x+y)^2 = xx+xy+yx+yy = x^2+xy+yx+y^2  (x+y)^3 = xxx+xxy+xyx+xyy +yxx+yxy+yyx+yyy        = x^3+x^2y+xyx+xy^2+yx^2+yxy+y^2x+y^3

全文を見る
すると、全ての回答が全文表示されます。
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.3

>そもそも「前からn項目」って何? うん.そうなんだけど もとの質問を 「任意の自然数nに対して, (x+y)^nの展開のn項目を二項係数を用いて表記できるか」 というふうにエスパー解釈してみた となると,例えばxに関する降べきの順で表現した場合での 1項目とn+1項目以外はできないから 「任意の自然数nに対して」というところに反して 結論としては「できない」といえるんじゃないかのー ・・・・ ちなみに「普通の環」といって可換環を表現するのは かなりまずいとは思う. なにも条件がない場合は可換なんて仮定しちゃいかんのだから

noname#184996
質問者

お礼

書き込みありがとうございます。現れる項はどのようなものがあるか、   x^n   xyx^(n-2) ・・・・   という意味ではどうでしょうか。

全文を見る
すると、全ての回答が全文表示されます。
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

そもそも「前からn項目」って何? 例えば行列の積に関して (A+B)^2 = A^2 + AB + BA + B^2 だけど, この右辺を (A+B)^2 = BA + B^2 + AB + A^2 としちゃいけない理由ないよね.

noname#184996
質問者

お礼

書き込みありがとうございました。そうでした。現れる項、という意味ではどうでしょうか。

全文を見る
すると、全ての回答が全文表示されます。
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

>前からn項目は簡単に表現できるのでしょうか? できません. 例えば(2次正方)行列で考えてみればよいでしょう (A+B)(A+B)=A^2+AB+BA+B^2 で終わりです

noname#184996
質問者

お礼

書き込みありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 代数の環の分野の問題です

    代数の環の分野の問題です 可換環Rが与えられたとき文字Xを不定元とする R係数の多項式は p(X)=a_nX^n+a_n-1X^n-1+…+a_1X+a_0 =Σ(i=0からn)a_iX^i (a_i∈R) なる形のものです Xを不定元とするR係数の多項式全体の集合は可換環をなしこの可換環をR[X} とします R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])[X_n] が定義され R[X_1X_2,…,X_n]をR上のn変数多項式環、 その元をR係数n変数多項式というとき n変数多項式は整理すると Σ_(0≦i_1,i_2,…,i_n) a_i_1i_2…i_nX_1^i_1X_2^i_2…X_n^i_n (a_i_1…a_i_n∈Rで和は有限和)とかける ことを示したいです 教えてください 文章分かりにくくてごめんなさい

  • 非可換多項式環 Q<x,y> をtexで表示したい

    2変数非可換多項式環 Q<x,y> をtexのきちんと正しい方法で表示したいと思っていますが、記号 < や > の正しい打ち方がわからず困っています。 ご存じの方がおられば、お教え頂けないでしょうか?

  • テイラー展開について教えてください。

    テイラー展開に関する問題です テイ ラー展開に関する問題です。 (1)以下の関数のx=0を中心としたテイ ラー展開をし、一般項を書け。 (i)cosx (ii)1/(1-x) (2)x=0を中心とした1/(2-x^2)のテイラ ー展開をし、一般項を書け。 (3)x=0を中心とした(cosx)/(2-x^2)のテ イラー展開をx^6の項まで求めよ。 (4)lim[x→0](1/x^4){(cosx/(2-x^2))-(1/2)}を求めよ。 以上です。 自分でも求めたのですが、あってい るかが分かりません。 確認お願いします。 (1)(i)cox=Σ[n=0→∞]((-1)^n)(x^(2n))/(2 n)! (ii)Σ[n=0→∞]x^n (2)1/(2-x^2)のテイラー展開は自信が ないのですが、これをテイラー展開 の式に代入して求めていくとすごく 時間がかかるので、 1/(2-x^2)=(1/2){1/(1-(x^2/2))}と変形し 、(1)の(ii)と同じようにして、Σ[n=0→ ∞](1/2)(x^2/2)^nとなりました。 果たして、これでいいのでしょうか ? (3)たぶんこれは(1)と(2)の結果を使え ということだと思うのですが、これ は(cosx)と1/(2-x^2)のそれぞれの項を かければいいだけですか? たとえば、1項は、cosxの1項目の1 と、1/(2-x^2)の1項目の1/2をかけて 、1/2となるのでしょうか? (4)これはちょっと分からないです。1 /x^4がかかっているので、テイラー 展開したものでも分母にxの項が入っ てしまい、発散しそな気がしたので すが、そんなはずはないので、よくわからないです 回答よろしくお願いします。

  • √(x^2+y^2)-xのマクローリン展開

    f(x,y) = √(x^2+y^2)-xのマクローリン展開がどのようになるか教えてください. また, 条件y<<xを用いると, 式の解はy^2/2xとなりますか. 私なりに計算してみたのですが, 何か間違っている気がします. アドバイスいただけたらうれしいです. -------------------以下解き方の考え方------------------ 2変数のマクローリン展開の場合, f(x,y)=Σ(n=0から無限大) 1/n!(x) (x∂/∂x + y∂/∂y)^n f(0,0) となると思っています。 偏微分の計算に関しては以下のようになりました. ∂f(0,0)/∂x = -1 ∂f(0,0)/∂y = 0 x及びyによるf(0,0)の2階以降の偏微分はすべて0 したがって関数fのマクローリン展開は f(x,y)=-x,,,,,,,明らかにおかしいですよね,,,,,,

  • √1+√2+√3+…+√nの漸近展開

    http://en.wikipedia.org/wiki/Euler-Mascheroni_constant によると 1+1/2+1/3+…+1/n =γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1) という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。 http://en.wikipedia.org/wiki/Stirling%27s_approximation によると n! =√(2πn)*(n/e)^n*e^λ(n) という漸近展開があるそうです。 ところで、 √1+√2+√3+…+√n などの漸近展開をご存知の方がいらっしゃれば教えてください。 y=√xのグラフとy=√(x+1)のグラフではさまれた面積と考えることで、 √1+√2+√3+…+√n =(2/3)n√n+… となることはわかるのですが、 √1+√2+√3+…+√n =(2/3)n√n+α√n+… とさらに精密にしたいとき、αがどういった定数になるのかわかりません。

  • 条件x[1]=1,x[n+1]=x[n]+・・・

    (1)条件x[1]=1,x[n+1]=x[n]+2^2(n=1,2,3,・・・)によって定められる数列{xn}の一般項はx[n]=□である。 (2)条件y[1]=4/3, 1/y[n+1]=4/y[n] + 3/4 (n=1,2,3,・・・)によって定められる数列{yn}の 一般項はy[n]=□である。 漸化式の問題です。 よろしくお願いします。

  • Taylor展開について

    (1)y=f(x)=x^3-xをx=1/√3でn(n≧5)次の項までTaylor展開したときの4次の項までの多項式を求めてください。お願いします。 (2)y=f(x)=1/1+x^2をx=0でn(≧5)次までTaylor展開したときの4次の多項式まで求めてください。お願いします。 (3)y=f(x)=e^-x^2をx=0でn(≧5)次までTaylor展開したとき、4次の多項式まで求めてください。お願いします。

  • 微分方程式の級数解 a[0] * x^n

    微分方程式      (d^2 y)/(dx^2) + (1/x) (dy/dx) - (n^2/x^2) y = 0   (x>0) の級数解を、次の問いに従って求めよ。 ただし、n>0とする。 (1) 級数解を      y(x) = x^c * Σ[i=0,∞] a[i] * x^i とおいたとき、指数cはどのように求まるか。ただし、a[0] ≠ 0であるとする。 解答 級数解を      y(x) = x^c * Σ[i=0,∞] a[i] * x^i とおいて、項別に微分すると      dy/dx = x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-1)      (d^2 y)/(dx^2) = x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2) これを微分方程式に代入して      x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2)       + (1/x) * x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-1)        + (n^2/x^2) * x^c * Σ[i=0,∞] a[i] * x^i = 0      x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2)       + x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-2)        + n^2 * x^c * Σ[i=0,∞] a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i-1) + (c+i) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] [ (c+i) { (c+i-1) + 1} - n^2 ] a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i-1+1) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)^2 - n^2 } a[i] * x^(i-2) = 0 x^(c-2)の係数について      (c^2 - n^2)a[0] = 0 でなければならない。 したがって、a[0] ≠ 0の条件から      c^2 = n^2      c = ±n と定まる。 (2) 一般解を級数解で求めよ。 解答 x^(i+c-2) (i=1,2,3,...)の係数について      { (c+i)^2 - n^2 } = 0 でなければならない。 c=nのとき、      { (c+i)^2 - n^2 } = (n+i)^2 - n^2                = 2ni + i^2 ≠ 0 であるから、a[i] = 0 (i=1,2,3,...)となる。 すなわち、これに対応する解は      a[0] * x^n     ←これが分かりません ・・・とまだまだ続くのですが、a[0] * x^nになる理由が分かりません。 自分で考えてみますと、      Σ[i=0,∞] { (c+i)^2 - n^2 } a[i] * x^(i+c-2) = 0 で、(i=1,2,3,...)はすべてa[i] = 0になると言ってるのだから、残るはi=0のみ。 i=0:      { (c+0)^2 - n^2 } a[0] * x^(0+c-2) = 0      { c^2 - n^2 } a[0] * x^(c-2) = 0 しかも、c=nなので      { n^2 - n^2 } a[0] * x^(n-2) = 0      { 0 } a[0] * x^(n-2) = 0 ・・・x^(n-2)の係数について係数は0という結果になりました。これでいいんですか??? たとえ、{ (c+i)^2 - n^2 } = 2ni + i^2としても、i=0なので0ですよね? このa[0] * x^nはどうやって導いたのでしょうか? 教えてください。お願いします。

  • R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])

    R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])[X_n] が定義され R[X_1X_2,…,X_n]をR上のn変数多項式環、 その元をR係数n変数多項式というとき n変数多項式は整理すると Σ_(0≦i_1,i_2,…,i_n) a_i_1i_2…i_nX_1^i_1X_2^i_2…X_n^i_n (a_i_1…a_i_n∈Rで和は有限和)とかける ことを示したいです 教えてください 文章分かりにくくてごめんなさい

  • (x-x^-2)^3nの展開式において、xを含まない項を求めよ。

    (x-x^-2)^3nの展開式において、xを含まない項を求めよ。 以下、文系脳で考えた解ですが、自信がありません。ご検証を御願い致します。 (x)^p-(x)^(-2*q)を考えてp-2q=0のとき(x)^0となる。 さらにp+q=3nとなる。つまりは3の倍数であり、整数部分を考えるとp+q=3になる。 p-2q=0かつp+q=3より(2,1)このときの係数は二項定理の応用で 3!/(2!1!)*1^2*(-1)^1=-3 xを含まない項の整数部分は―3となり、その項自体は全て―3nとなる? まったくあっている気がしません…