• ベストアンサー

証明

Vがx,yの実数係数の多項式全体からなるベクトル空間で、T:V→Vを T(f(x,y))=-f(-y,x+y) とし、x^2,xy,y^2で張られるVの部分空間をV2としたとき、 f(x,y)∈V2に対してT(f(x,y))∈V2を与える変換をT2とした とき、T2がV2の線形変換であることの証明と、基底x^2,xy,y^2に関するT2の表現行列Aを 求める問題がわかりません。どなたかお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

方針は、http://okwave.jp/qa/q7297206.html と同じ。 f(x,y) と T( f(x,y) ) を各々、基底 { x^2, xy, y^2 } 上に成分表示して、 成分間の対応が一次変換かどうかを確認すればよいです。 f(x,y) = a x^2 + b xy + c y^2, T( f(x,y) ) = p x^2 + q xy + r y^2 と置いて、 p, q, r が a, b, c の一次変換になるかどうかです。

hirohumi212
質問者

お礼

ありがとうございます

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 線形代数

    Vを3次以下の実係数多項式全体のなすベクトル空間とする: V={a0+a1x+a2x^2+a3x^3|a0,a1,a2,a3∈R} V上の線形変換T:V→Vを T(f(x))=f(x+1)-xf'(x) (f(x)∈V) によって定義する。但し、f'(x)はf(x)の微分を表わす。 (1)Vの基底x^3,x^2,x,1に関するTの行列表示を求めよ。 (2)ImTとKerTの基底を一組づつ求めよ。 という問題なのですがどなたかわかる方がいらっしゃれば解答よろしくお願いいたします。

  • 表現行列

    Vを実数に係数を持つ2次以下の多項式全体が成すベクトル空間とする。すなわち、 V={a+bx+c*x^2|a、b、c∈R} である。tを0≦t なる定数とし、線形変換T :V→V を T(f(x))=f(1+tx)により定義する。 Vの基底1、x、x^2に関するTの表現行列を求めよ。 という問題があります。一般に、、、、 【線形写像f:R^n→R^mに対して、(m,n)型の行列Aがただひとつ定まり、 x'=f(x)=Axと表せる。(x∈R^n, x'∈R^m) この行列Aを、線形写像fの表現行列という。】 表現行列はこのように定義されていますから、この問題の場合 t^(T(1),T(x),T(x^2))= (1,0,0) (1,t,0) (1,2t,t^2) * t^(1,x,x^2) となるため、求める表現行列Aは (1,0,0) (1,t,0) (1,2t,t^2) となるかと思っていたのですが、解答には、これを転置した行列が書いてありました。 (1,1,1) (0,t,2t) (0,0,t^2) となっていました。 なぜこうなるのか理屈が分からないのですみませんが教えてください。

  • 線型代数・一次変換

    一次変換に関する問題でわからないものがあるのでよろしければ教えてください。 1.線型空間Vの基底をB={v1,v2,b3}とするとき、 T(v1)=v2,T(v2)=v3,T(v3)=v4,T(v4)=v1 を満たすV上の一次変換Tに関する行列を求めよ。 2.T(a0+a1*x) = a0 + a1*(x + 1) によって一次変換T:P1→P1を定義し、 B={6+3x, 10+2x}に関するTの行列[T]Bと、B'={2,3+2x}に関するTに関するTの行列[T]B'を求めよ。 (P1:次数1以下の多項式全体を作る線型空間) どうしてもわかりません。 もしよろしければ詳しく教えて頂けるとありがたいです。

  • 線形代数

    Vを2次以下の実係数多項式全体のなすベクトル空間とする: V={a0+a1x+a2x^2|a0,a1,a2∈R} (1)1,x-1,(x-1)^2はVの基底であることを示せ。 (2)α,β,γ∈Rとし、T(1)=α,T(x-1)=β,T((x-1)~2)=γを満たすR-線形写像T:V→Rが与えられたとする。任意のf=a0+a1x+a2x^2∈VはFによってどのような実数に写される。T(f)を計算せよ。 という問題なのですが、どなたか解答をお願いいたします。

  • 表現行列の正確な意味とは?

    宜しくお願い致します。 [Q]Let T∈L(V).Write down matrix representation of [T]_β and [T]_β' given the following basis: β:v1,v2,…,vn β':v'1,v'2,…,v'n という問題なのですがこの場合の表現行列とは何を意図するのかはっきりわかりません。 『[定義] n次元F線形空間Vの基底を{v1,v2,…,vn}とし、map g:V→F^nを V∋∀Σ[i=1..n]civi→g(Σ[i=1..n]civi):=t(c1,c2,…,cn) (tは転値行列を表す) でgを与えるとgは同型写像となる。 ここで{v1,v2,…,vn}の順序を変えるとgは別物になってしまうのでこの順序を込めた 基底 {v1,v2,…vn}をβ:=[v1,v2,…,vn]と表す事にし、このgをβによって決まる同型写像 と呼ぶ事にする。 m次元F線形空間Wの基底をβ':=[w1,w2,…,wm]によって決まる同型写像をh:W→F^mと し、 線形写像f:V→Wに対し、合成写像hfg^-1:F^n→F^mは線形写像となる。 行列表現とは始集合のF線形空間Vの基底[v1,v2,…,vn]=:βと終集合のF線形空間Wの 基底[w1,w2,…,wm]=:β'とし、f∈L(V,W)において f(vj)=Σ[i=1..m]aijwi (j=1,2,…,n)で定まる行列(aij)=:Aを βからβ'へのfによる行列表現という』 だと思います。 つまり、表現行列を正確に述べるには"基底何々から基底何々への線形写像何々による表現行列" という風に3項目はっきり述べないといけないと思います。 さて、線形変換の場合, 上記の問題文で[T]_βと書いた時、これは (1)基底βからβへの線形写像Tの表現行列 (2)基底βからβ'への線形写像Tの表現行列 (3)基底β'からβへの線形写像Tの表現行列 のどれを意図しているのでしょうか?

  • 教えてください。

    夏休み明けのテストで課題の類似問題が出るといわれているのですがその課題の解き方がよく分かりません。解き方を教えてください。 ・(1)R^(3)において、次は基底になることを示せ。       A={v_1=(-1,1,0) , v_2=(3,-1,0) , v_3=(1,2,-1)} (2)R^(3)の線型変換φが、次を満たすとき、φは同型であることを示せ       φ(v_1)=(1,0,0) , φ(v_2)=(4,2,0) , φ(v_3)=(5,6,3) (3)基底Aに関するφ(3,2,-1)の座標を求めよ ・(1)R^(3)において、次は基底になることを示せ       u=(1,1,0) , v=(2,1,1) , w=(3,1,1) (2)R^(3)の線型変換φを       φ(x,y,z)=(2x -y+z , -3y+5z , x+y+2z)     と定めるとき、基底A={u,v,w}に関するφの表現行列を求めよ (3)R^(3)の基本基底からAへの基底変換の行列を求めよ (4)φは同型であることを示せ 以上です。両方とも(1)についてはなんとなく解くことができるのですがそれ以降の問題ができません。特に行列に示すところが分かっていないのでその辺を中心に教えてもらえたらと思います。お願いします。

  • この代数学の問題を教えて下さい。

    この問題が分かりません。 Rを係数に持つ2次以下の多項式のなすベクトル空間をVで表す。Vの元f(x)に対して、 xf"(x)-2f'(x)を対応させるVの一次変換をFとする。Vの基底1,x,x^2に関するFの行列表示Aを与えなさい。またAの階級を求めなさい。という問題です 困っています。分かる方、どうかお願いします。

  • 線形写像と行列についての質問です

    線形空間 K3 から線形空間 K3 への線形写像 T が(x,y,z) =(z,x,y)とし、K³ の基底を【(1,-1,0),(0,1,-1) ,(1,1,1)】とすると、この基底に関する線型写像 T の行列を求めよ。 この問題が分かりません…

  • 表現行列教えてください…解き方も…

    V=R^3 Vの基底B=<(1,1,-1),(1,-1,2),(1,0,1)> 線形変換f:V→V f(x)=Ax, A=(1 1 1,1 -1 -1,-2 5 4) このときfの基底Bに関する表現行列ってどうなりますか? できれば解き方などもお願いします。 A= 1 1 1 1 -1 -1 -2 5 -4

  • 表現行列を教えてください。解き方も…

    V=R^3 Vの基底B=<(1,1,-1),(1,-1,2),(1,0,1)> 線形変換f:V→V f(x)=Ax, A=(1 1 1,1 -1 -1,-2 5 4) このときfの基底Bに関する表現行列ってどうなりますか? できれば解き方などもお願いします。 A= 1 1 1 1 -1 -1 -2 5 -4