• ベストアンサー

期待値の公式の証明

E(x+y)=E(x)+E(y)を証明せよ、という問題が分かりません。 同時確率密度関数f(xy) xの周辺確率密度関数fx(x) yの周辺確率密度関数fy(y)を使えと言われましたが、どう使えば良いのか・・・ 分かる方はご意見をお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

考えることは、何ひとつ無い。 定義に従い、黙々と計算しよう。 (x,y) の変域を S、 S の x=x0 での断面を Sy(x0) = { y | (x0,y)∈S }、 S の y=y0 での断面を Sx(y0) = { x | (x,y0)∈S } と置く。 また、x, y それぞれの変域を Dx = { x | ∃y, (x,y)∈S }、 Dy = { y | ∃x, (x,y)∈S } と置く。 E(x+y) = ∬[(x,y)∈S] (x+y) f(x,y) dx dy   = ∬[(x,y)∈S] x f(x,y) dx dy + ∬[(x,y)∈S] y f(x,y) dx dy   = ∫[x∈Dx] ∫[y∈Sy(x)] x f(x,y) dy dx + ∫[y∈Dy] ∫[x∈Sx(y)] y f(x,y) dx dy   = ∫[x∈Dx] x { ∫[y∈Sy(x)] f(x,y) dy } dx + ∫[y∈Dy] y { ∫[x∈Sx(y)] f(x,y) dx } dy   = ∫[x∈Dx] x fx(x) dx + ∫[y∈Dy] y fy(y) dy   = E(x) + E(y).

Soborut
質問者

お礼

ご丁寧な回答をありがとうございました。 返信が遅れて申し訳ありません。 試しに自分でも計算しようと思います。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 確率・統計の問題です。

    以下の問題の解答をお願いします。 確率変数X,Yの同時確率密度関数 fx,y(x,y) が次式で与えられている。但し、cは定数とする。これについて、以下の問いに答えよ。 fx,y(x,y) = { ce^(-x-y), 0≦x≦y 0, その他 } (1)cの値を求めよ。 (2)Yの周辺確率密度関数fy(y)を求めよ。 (3)XとYが独立であるか否かを、理由と共に答えよ。

  • 確率・統計の問題です

    以下の問題の解答をお願いします。 連続確率変数Xの累積分布関数はFx(x) = P{X≦x}で与えられる。区間[0, 1]で定義された、二つの独立な確率変数X1, X2の累積分布関数Fx1(x), Fx2(x)が図で与えられるとき、以下の問いに答えよ。 Y=X1+X2とおくと、Yの累積分布関数Fy(y)はX1,X2の結合密度関数f12(x1, x2)を用いて Fy(y) = ∫[-∞→∞] ∫[-∞→y-x1] f12(x1, x2)dx2dx1 で与えられる。このことを利用してYの確率密度関数fy(y)を求め図示せよ。

  • 指数やLogが含まれる2変数関数 f(x,y)の偏微分について

    こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が ようやく理解できました。大変ありがとうございました。 それで、追加の質問で申し訳ないのですが、 以下の解き方があっているか、ご指導のほど、よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (5) Log √(x^2+y^2+1) 先に質問をした回答より、 fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1) fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1) また、(Log x)\'=1/xの公式と合わせて, Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y (6) e^(xy) fx(x,y)=e^(xy) fy(x,y)=e^(xy) (7) sin xy fx(x,y)=cos xy = y * cos x fy(x,y)=cos yx = x * cos y (8) e^x * sin y fx(x,y)=e^x * sin y fy(x,y)=e^x * cos y (9) x^2 cos xy 積の微分の公式 より、 fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy 以上、適用する公式などにおかしいところがあれば、 ご指導お願いします。

  • 指数やLogが含まれる2変数関数 f(x,y)の偏微分について

    こちらの皆様のおかげで、2変数関数 f(x,y)の偏微分の解き方が ようやく理解できました。大変ありがとうございました。 それで、追加の質問で申し訳ないのですが、 以下の解き方があっているか、ご指導のほど、よろしくお願いします。 【問題】 次の2変数関数f(x,y)を偏微分せよ。 すなわち、関数f(x,y)のxおよびy関する変動関数fx(x,y)およびfy(x,y)を求めよ。 (5) Log √(x^2+y^2+1) 先に質問をした回答より、 fx(x,y)(x^2+y^2+1)=x/√(x^2+y^2+1) fy(x,y)(x^2+y^2+1)=y/√(x^2+y^2+1) また、(Log x)'=1/xの公式と合わせて, Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/x Log √(x^2+y^2+1)のfx(x,y)=√(x^2+y^2+1)/y (6) e^(xy) fx(x,y)=e^(xy) fy(x,y)=e^(xy) (7) sin xy fx(x,y)=cos xy = y * cos x fy(x,y)=cos yx = x * cos y (8) e^x * sin y fx(x,y)=e^x * sin y fy(x,y)=e^x * cos y (9) x^2 cos xy 積の微分の公式 より、 fx(x,y)=2x * cos xy + x^2(-sin xy) = 2x cos xy -x^2 sin xy fy(x,y)=x^2 * ( -sin xy) = -x^2 sin xy 以上、適用する公式などにおかしいところがあれば、 ご指導お願いします。

  • 統計学 独立かどうかについて

    いつもお世話になっております. 次の問題の考え方が分からないために困っております. XとYは同時確率密度関数が次のように定義されている連続型同時分布関数である. f(x,y)=(3/2)y^2 (0≦x≦2, 0≦y≦1)    =0 (その他) 1.XとYの周辺確率分布関数を求めなさい. 2.XとYは独立であるかを調べなさい. 3.{X<1}という事象と{Y≧1/2}という事象は独立であるかを調べなさい. 1についてはfX(x)=1/2,fY(y)=3y^2と算出でき,その結果を用いて2の答えは独立であると分かったのですが,3に関してはどうすればいいのか全く分かりません. どなたかご教示いただけないでしょうか?何卒よろしくお願い致します.

  • 統計学の問題です

    統計学の問題です 確率ベクトル(X,Y)の同時確率密度関数が fX,Y(x,y)=12/(1+x+y)^5 (x,y>0) =0 (その他) で与えられているものとする。この時、以下の問いに答えよ。 (1)X=xが与えられた時のYの条件付(確率)密度関数fY(y|x)を求めよ (2)E(X)を求めよ (3)Cov(X,Y)を求めよ これらの解答法を教えてください ちなみに(2)だけはなんとかやってみたのですが、yは残ってもいいのでしょうか?

  • f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求

    f(x,y)=xe^(xy+2y^2)の第1次及び第2次の偏導関数を求める問題で解答はfx=(1+xy)e^(xy+2y^2),fy=x(x+4y)e^(xy+2y^2),fxx=(2y+xy^2)e^(xy+2y^2), fxy={x+(1+xy)(x+4y)}e^(xy+2y^2),fyy={4x+x(x+4y)^2}e^(xy+2y^2)でそれぞれどのようにして微分されているのかを詳しく教えてください 特にfxxからまったく分からないので教えてください 回答よろしくお願いします。

  • 期待値の加法性の証明法

    確率変数Zの確率密度関数をpとするとき,Zの期待値は E[Z] = ∫{z p(z)}dz (ただし積分範囲はZの定義される空間全体) で定義されますが,期待値の加法性: E[X + Y] = E[X] + E[Y] はどのように証明できるのでしょうか? 証明もしくは証明が載っている文献を教えて頂ければ幸いです。

  • 条件付き期待値

    (1)「条件付き期待値は確率変数」の証明についてですが、E[X|Y]は確率変数Yの関数なので確率変数となると書いてあったのですが、この関数はボレル可測でなくても大丈夫なんでしょうか? もしそうなら理由を教えて下さい。またボレル可測になっているなら、この関数がボレル可測になる証明をお願いします。 また「条件付き期待値は確率変数である」の証明について、他のやり方の方が分かりやすいというものがもしあれば教えて下さい。 (2)「確率変数が連続型の時、E[g(Y)X|Y]=g(Y)E[X|Y]」の証明をできるだけ丁寧に証明して下さい。 Y=yを与えた時の(X,Y)の条件付き密度をどう処理すればいいのか分かりません。 とても急いでます。片方だけでもいいのでよろしくお願い致します。

  • 統計学ー期待値

    (1)X_1,X_2は独立で、指数分布f(x;θ)=(1/θ)e^(-x/θ) (x>0)に従うとき、T=X_1+X_2,S=X_2の同時密度関数は、ψ(t,s;θ)={(1/θ)^2}e^(-t/θ) (0<s<t<∞)であることを示し、Tの周辺密度関数を求めよ。 →ヤコビヤンを求め、文字を代入して証明、周辺密度関数はψを[0→t]で積分し、{(1/θ)^2}te^(-t/θ) (2)t=tを与えたときの、Sの密度関数を求め、Rao-Blackwellの定理における条件付き期待値、T(t)=E(S|T=t)を求めよ。 この問題で、(2)で行き詰まっています。教えてください。