• ベストアンサー

確率の問題です。

白いボールを持っている人は全体の20%いる。6人のうち白いボールを持っている人が3人以下の確率率は? ということなのですが教科書に二通りやり方があって (8/10)^6=0.262144 1-0.262144= 0.737856 簡単なやつはこうでたのですが もうひとつが P=(P(6)+P(5)+P(4)) P(n)=6Cn×(2/10)^n×(8/10)^6-n に代入すると P(6)=64 P(5)=1536 P(4)=23040 P=24640/10^6 1-24640/10^6 こうなったのですが桁が全然ちがいます。 間違ってるところがあれば指摘おねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • kenjoko
  • ベストアンサー率20% (23/110)
回答No.2

>白いボールを持っている人は全体の20%いる。6人のうち白いボールを持っている人が3人以下の確率は? I:ボールを持っている人の確率、ボールを持っていない人の確率を考える。 >(8/10)^6=0.262144 1-0.262144= 0.737856      意味不明、計算がめちゃくちゃ >P(n)=6Cn×(2/10)^n×(8/10)^(6-n)    この式の意味を理解できるか II:次の4つの場合を考える 白いボールを持っている人が3人以下の場合・・・(1) 白いボールを持っている人が4人以上のときの余事象・・・(2) 白いボールを持っていない人が3人以上のとき・・・(3) 白いボールを持っている人が2人以下のときの余事象・・・(4) 上の4つの場は同値であることを理解する   >もうひとつが P=P(6)+P(5)+P(4)) >P(n)=6Cn×(2/10)^n×(8/10)^(6-n) これは、上の(2)の場合であるから、この余事象が答えとなる III: 答え ーp=1-p    ※ーp:pの余事象 これでやってみて下さい。分からなかったら補足して下さい

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

考え方は、後者のほうが合ってますが、計算が間違っています。 (8/10)^6=0.262144 これは、6人とも白いボールを持っていない確率 1-0.262144= 0.737856 これは、1人以上が白いボールを持っている確率 P(n)=6Cn×(2/10)^n×(8/10)^(6-n) P(n)は、6人中n人が白いボールを持っている確率 P(6)=64/10^6 P(5)=1536/10^6 P(4)=15360/10^6 P=P(6)+P(5)+P(4)=16960/10^6 Pは、4人以上が白いボールを持っている確率 1-P=983040/10^6 1-Pは、白いボールを持っている人が3人以下の確率

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 確率について

    いまn個のボールと2n個の箱があります。 n個の箱にボールを入れますが、箱には何個でもボールは入るものとします。 いまボールは等しい確率(1/2n)の確率でどこかの箱に必ず入るとき、箱にはボールが1個か0個入っている確率は? (2n/2n){(2n - 1)/2n}・・・{(n +1 )/2n}となるのはわかるのですが、こう考えるとダメなのはなんでなの? いまn個の箱にボールを1個ずついれて、n個の空箱とn個のボールが入った箱があります。 この箱の並べ方は2nCn通り、ボールが箱に入るすべては、n個のボールと2n-1の仕切り棒の並べ替えと考えて、3n-1Cn 2nCn/3n-1Cn これではなぜダメなの?

  • 確率(サイコロ)の問題です

    問)n個のサイコロ(n≧2)を同時に投げる時、出る目の最小値が2、最大値が4である確率を求めよ 解) 目の出方は6`n通り A:出る目が全て2、3、4のいずれか B:出る目が全て2、3のどちらか C:出る目が全て3、4のどちらか よって求める確率は 〔P(A∩(B∪Cでない))〕=P(A)-P(B∪C)=P(A)-{P(B)+P(C)-P(B∩C)}であり B∩C:出る目が全て3 だから、3`n/6`n-{(2`n+2`n-1)/6`n}=(3`n-2*2`n+1)/6`n 〔〕内の式をどうやって立てたのか分かりません。(nに2等を代入すると正しい答えが出てくるので答えは合っています) どなたかヒントだけでもいいので、考え方を教えていただけませんか?お願いしますm(__)m

  • 確率の問題です

    「ある試行で事象Aの起こる確率をPとする。この試行を独立にn回繰り返すとき、事象Aがちょうどk回起こる確率は、 nCk p^k・(1-p)^(n-k)」 だというのはわかるのですが、 その期待値の Σ(from k=0 to n)k・nCk p^k・(1-p)^(n-k)というのがよくわかりません。シグマがあったり nCk p^k・(1-p)^(n-k) のまえについているkがあったりするのは理解に苦しむのですが。例えば、k=3のときを考えてみると、Σ(from k=0 to n)k・nCk p^k・(1-p)^(n-k)の式のkのところに3を代入すればよいのですよね。そうすると、 「from k=0 to n」のところのk=0 にも入れるのでしょうか。「from 3=0 to n」になってしまうと思うのですが。 よろしくお願いします。

  • 確率の問題です。よろしくお願いします。

    この問題を解いていただけないでしょうか? (3)まではできたのですが・・・ よろしくお願いします。 nを自然数とする。1枚のコインを2n回投げるとき、 表がちょうどn回出る確率をP(n)とする。 (1)P(1) P(2) を求めよ (2)P(n+1)/P(n) を求めよ (3)(√n) / √(n+1) < P(n+1)/P(n) < √(n+1)/√(n+2) を求めよ (4) 1 / 2√n ≦ P(n) ≦ 1 / √(2n+2) を求めよ

  • 集合と確率

    数学で別解を考えて間違えがわからないので質問します。 問題は、 n個のサイコロを同時になげるとき、出る目の最大値が5である確率をもとめなさい。です。 本に載っている解答では、n個のサイコロを同時になげるとき、目の出方は6^n通りあり、これらは同様に確からしい。 「出る目の最大値が5である」とは、「出る目はすべて5以下で、少なくとも1個の目は5である」だから「出る目がすべて5以下である」「5の目が1個もでない」 という事象をそれぞれA、Bとおくと、求める確率は P{A∩(Bでない)}=P(A)-P(A∩B)・・・(1)と表される。 P(A)=5^n/6^n 他方、A∩Bは「出る目がすべて5以下かつ5の目が1個もでない」すなわち「出る目がすべて4以下である」という事象であるから P(A∩B)=4^n/6^n これらを(1)に代入して (5^n-4^n)/6^n と答えをだしています。 自分の考えでは、「少なくとも1個の目は5である」「出る目がすべて5以下」という事象をそれぞれ A、Bとおき、P(A)=1-(5^n/6^n)、P(B)=5^n/6^n。 求める確率をP(A∩B)とし、P(A∩B)=P(A)+P(B)-P(A∪B)・・・(2)を使って求めようとしました。 P(A∪B)=1-P(A∪Bでない)=1-P{(Aでない)∩(Bでない)} より、 Aでないは「5の目が1回もでない」Bでないは「出る目がすべて5より大きい」と考え、(Aでない)∩(Bでない)は「出る目がすべて6」 よってP(A∪B)=1-(1^n/6^n)。 (2)に求めた確率を代入して、1^n/6^nが答えになってしまいました。 どなたか自分の考えの間違いを指摘してください。お願いします。 

  • 確率の問題です

    図のように、平面上にA_0,A_1,A_2・・およびB_0,B_1,B_2・・が並んでいる。 点PはA_0から出発し、次の規則(※)に従いこれらの点の上を移動する。また、PがA_nへ到る行き方がa_n通り、B_nへ到る行き方がb_n通りあるとする。 (※)PがA_nにいるときには1秒後にA_n+1またはB_nに、一方B_nにいるときにはB_n+1またはA_nに移動する。ただし、前にいた点には戻らない。また、Pが移動しうる点が複数あるときには、それぞれの点へ等確率で移動する。 (1)a_3,b_3を求めよ。 (2)a_n,b_nを求めよ。 (3)一方、点QはA_8からPと同時に出発し、1秒ごとに順次A_8→A_7→A_6→・・・→A_0と移動し、その後はA_0にとどまる。PとQが出会う確率を求めよ。

  • 確率の問題です

    箱の中から無作為に1個の球を取り出す。 取り出した球が赤球ならば、その赤球と箱の外の新しい白球2個、合計3個を箱に入れる。 取り出した球が白球であれば、その白球と箱の外の新しい赤球2個、合計3個を入れる。 箱の中に、最初、赤球1個と白球9個の合計10個の球が入っていたとき、n回目に赤球を取り出す確率を求めよ。という問題についてですが、漸化式を立てて解いていきたいと思います。 n回の操作後、箱の中の球は10+2n個になる。 n回目に赤球を取り出す確率をP(n)とする。 n+1回目に取り出した球が、n回目の操作で新たに箱に加えられた2個の球かどうかで場合分けをして、P(n+1)をP(n)で表す。 1.新たに加えられた球でない場合:n+1回目に取り出した球がn回目に加えられた球以外の確率は(8+2n)/(10+2n)で、その球が赤球の確率はP(n)であるから、これにP(n)をかけたものである。 まだ解説はありますが、ここまでの説明で疑問があります。 なぜ赤球である確率はP(n)なのでしょうか。 P(n)はn回目に赤球が出る確率ですよね。 なぜn+1回目の新たに加えられたものではないものを引く確率にn回目に赤球を引く確率をかければ、それがn+1回目に赤球を引く確率となるのでしょうか? もしわかるかたがいらっしゃいましたら教えていただければ助かります。 よろしくお願い致します

  • 確率の問題です

    確率・統計の問題なのですが、以下の問題がよく分からず困っています。どなたかご協力をお願いします。 ---------------------------------------------------------------- X[1],X[2],・・・を独立な確率変数とし、その確率分布は P(X[k]=1)=p,P(X[k]=0)=q (0<p<1,p+q=1)(k=1,2,・・・) であるとする。このときS[0]=0とおき、順次 S[n]=min{k>S[n-1]:X[k]=1}-S[n-1] (n=1,2,・・・) として、確率変数列S[1],S[2],・・・を定める。 ただし、k>S[n-1]かつX[k]=1を満たす自然数kが存在しないときはS[n]=∞と定める。このとき次に答えよ。 (1)任意の自然数nについて、S[1],S[2]・・・,S[n]は独立であることを示せ。 (2)任意の自然数nについて、S[n]の確率分布を求めよ。 (3)任意の自然数nについて、確率P(S[n]<∞)を求めよ。 ---------------------------------------------------------------- 考えても全く分からなかったので質問させて頂きました。 まず、S[n]が何を示しているのかを教えて頂きたいです。 どうかよろしくお願いします。

  • 確率の問題です。

    条件付き確率の問題で、公式通りにやればいいと思ったのですが、どうもうまくいきません。 教えていただけると助かります。 以下問題です。 【 ある工場で生産される製品は、確率ε(0<ε<1)で不良品である。生産されたものが良品であることをX=0で、不良品であることをX=1で表す 】 (1) 製品出荷前に検査を行い、良品と判断されたときY=0、不良品と判断されたときY=1とする。 X=0のとき、確率0.9でY=0、確率0.1でY=1となる。 X=1のとき、確率0.1でY=0、確率0.9でY=1となる。 P(X=1| Y=0) を求めよ。 (2) (1)と同じ検査を、製品出荷前にn回繰り返し行う。n回の検査で不良品と判断された回数をZnとする。n回の検査結果は互いに独立とする。 P(X=1 | Z(n)=z(n)) (z(n) = 0,1,2,,,,n)が、 n - z(n) およびεの関数となることを示せ。 (3) q = P(X=1 | Z(2)=0), r = P(X=1 | Z(2) = 2) とおく。(1)と同じ検査を繰り返し、検査結果Z(n)=z(n)に基づく条件付き確率P(X=1 | Z(n) = z(n)) が、初めてq以下あるいはr以上となったときに検査を終了する。製品が良品であったとき、検査終了までにかかる検査回数の期待値を求めよ。 ーーーーーーーーーーーーーーーーーーーーーーーーー 自分としては、(2)で  P(X=1 | Z(n)=z(n)) = (0.9ε/(0.1+0.8ε))^z(n) * (0.1ε/(0,9-0.8ε))^(n-z(n)) とした時点で公式通りできたと思ってたんですが P(X=1 | Z(n+1)=z(n)+1) = (0.9ε/(0.1+0.8ε))^(z(n)+1) * (0.1ε/(0,9-0.8ε))^(n-z(n)) がP(X=1 | Z(n) = z(n))より小さくなるのが直感的に納得できなくて間違っているのかもしれないと感じています。(0.9ε< 0.1 + 0.8εなので) 当該条件において、n+1回測った時点での条件付き確率がn回測った時点での条件付き確率より小さいことに疑問を感じているので、解答含め教えていただきたいです。 どうぞよろしくお願いいたします。

  • 確率

    3個の箱A,B,Cが有り、1匹のネズミが1秒ごとに隣の箱へ移動する。 その移動の方向と確率は、 箱Aにいる時は、確率Pで箱Bに移動する。 箱Bにいる時は、確率Pで箱Cに移動する。 また、確率1-Pで箱Aに移動する。 箱Cにいる時は、確率1-Pで箱Bに移動する。 n秒後にネズミが箱A,B,Cにいる確率をそれぞれAn、Bn、Cnとする。 ただし、n=0の時ネズミは箱Aにいるものとする。 また、0<P<1とする。 (1)An,Bn,CnをAn_1、Bn_1,Cn_1およびPを用いて表せ。 (2)An+1+αAn+βBn_1=γ(n=1,2,3、…)とするときα、β、γ、をPの式で表せ。 (3)P=1/2の時、自然数mに対して、A2nを求めよ。 なんですが、これもサッパリわかりません…